[1] 中国建筑能耗研究报告2020[J]. 建筑节能(中英文), 2021, 49(2): 1–6. [2] GASSER J, CAI H M, KARAGIANNOPOULOS S, et al. Predictive energy management of residential buildings while self-reporting flexibility envelope[J]. Applied Energy, 2021, 288: 116653. [3] MASON K, GRIJALVA S. A review of reinforcement learning for autonomous building energy management[J]. Computers and Electrical Engineering, 2019, 78(C): 300–312. [4] XIONG L, LI P, WANG Z, et al. Multi-agent based multi objective renewable energy management for diversified community power consumers[J]. Applied Energy, 2020, 259: 114140. [5] 曹雅琦, 赵波, 王丽婕, 等. 基于遗传蚁群的光储电站运行效益提升策略研究[J]. 中国电力, 2022, 55(2): 9–18 CAO Yaqi, ZHAO Bo, WANG Lijie, et al. Research on operational benefit improvement strategy of optical storage power station based on genetic ant colony algorithm[J]. Electric Power, 2022, 55(2): 9–18 [6] 王子琪, 张慧媛, 许军, 等. 基于改进人工蜂群算法的区域电网储能系统能量管理优化策略[J]. 中国电力, 2022, 55(9): 16–22, 55 WANG Ziqi, ZHANG Huiyuan, XU Jun, et al. An energy management optimization strategy for regional power grid energy storage system based on improved artificial bee colony algorithm[J]. Electric Power, 2022, 55(9): 16–22, 55 [7] LIU J, LIU Z, WU Y, et al. Impact of climate on photovoltaic battery energy storage system optimization[J]. Renewable Energy, 2022, 191: 625–638. [8] 苏鹏伟, 赵军, 邓帅, 等. 基于预测技术的建筑可再生能源系统匹配特性分析[J]. 太阳能学报, 2019, 40(8): 2360–2367 SU Pengwei, ZHAO Jun, DENG Shuai, et al. Analysis of matching performance of building renewable energy system based on forecasting technology[J]. Acta Energiae Solaris Sinica, 2019, 40(8): 2360–2367 [9] 黄猛, 赵柏扬, 李勇, 等. 以光伏空调为中心的建筑能源系统控制优化[J]. 制冷技术, 2019, 39(1): 1–5 HUANG Meng, ZHAO Baiyang, LI Yong, et al. Control optimization of building energy systems centered on photovoltaic air conditioners[J]. Chinese Journal of Refrigeration Technology, 2019, 39(1): 1–5 [10] MOCANU E, MOCANU D C, NGUYEN P H, et al. On-line building energy optimization using deep reinforcement learning[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 3698–3708. [11] WANG Z, HONG T. Reinforcement learning for building controls: the opportunities and challenges[J]. Applied Energy, 2020, 269: 115036. [12] 郑洁云, 宋倩芸, 吴桂联, 等. 基于Q学习的区域综合能源系统低碳运行策略[J]. 电力科学与技术学报, 2022, 37(2): 106–115, 128 ZHENG Jieyun, SONG Qianyun, WU Guilian, et al. Low-carbon operation strategy of regional integrated energy system based on the Q learning algorithm[J]. Journal of Electric Power Science and Technology, 2022, 37(2): 106–115, 128 [13] 沈国辉, 赵荣生, 董晓, 等. 基于多信息交互与深度强化学习的电动汽车充电导航策略[J]. 南方电网技术, 2022, 16(1): 108–116 SHEN Guohui, ZHAO Rongsheng, DONG Xiao, et al. Electric vehicle charging navigation strategy based on multi-information interaction and deep reinforcement learning[J]. Southern Power System Technology, 2022, 16(1): 108–116 [14] 毛亚哲, 何柏娜, 王德顺, 等. 基于改进深度强化学习的智能微电网群控制优化方法[J]. 智慧电力, 2021, 49(3): 19–25, 58 MAO Yazhe, HE Baina, WANG Deshun, et al. Optimization method for smart multi-microgrid control based on improved deep reinforcement learning[J]. Smart Power, 2021, 49(3): 19–25, 58 [15] 蔺伟山, 王小君, 孙庆凯, 等. 不确定性环境下基于深度强化学习的综合能源系统动态调度[J]. 电力系统保护与控制, 2022, 50(18): 50–60 LIN Weishan, WANG Xiaojun, SUN Qingkai, et al. Dynamic dispatch of an integrated energy system based on deep reinforcement learning in an uncertain environment[J]. Power System Protection and Control, 2022, 50(18): 50–60 [16] 傅质馨, 李潇逸, 朱俊澎, 等. 基于马尔科夫决策过程的家庭能量管理智能优化策略[J]. 电力自动化设备, 2020, 40(7): 141–152 FU Zhixin, LI Xiaoyi, ZHU Junpeng, et al. Intelligent optimization strategy of home energy management based on Markov decision process[J]. Electric Power Automation Equipment, 2020, 40(7): 141–152 [17] 杨思明, 单征, 丁煜, 等. 深度强化学习研究综述[J]. 计算机工程, 2021, 47(12): 19–29 YANG Siming, SHAN Zheng, DING Yu, et al. Survey of research on deep reinforcement learning[J]. Computer Engineering, 2021, 47(12): 19–29 [18] LIU Y K, ZHANG D X, BENG GOOI H. Optimization strategy based on deep reinforcement learning for home energy management[J]. CSEE Journal of Power and Energy Systems, 2020, 6(3): 572–582. [19] 梁宏, 李鸿鑫, 张华赢, 等. 基于深度强化学习的微网储能系统控制策略研究[J]. 电网技术, 2021, 45(10): 3869–3877 LIANG Hong, LI Hongxin, ZHANG Huaying, et al. Control strategy of microgrid energy storage system based on deep reinforcement learning[J]. Power System Technology, 2021, 45(10): 3869–3877 [20] WU Y, LIU Z, LIU J, et al. Optimal battery capacity of grid-connected PV-battery systems considering battery degradation[J]. Renewable Energy, 2022, 181: 10–23. [21] LIU J, YANG X, LIU Z, et al. Investigation and evaluation of building energy flexibility with energy storage system in hot summer and cold winter zones[J]. Journal of Energy Storage, 2022, 46: 103877. [22] BACHER P, MADSEN H. Identifying suitable models for the heat dynamics of buildings[J]. Energy & Buildings, 2011, 43(7): 1511–1522. [23] 王丰, 顾佼佼, 曹倩, 等. 马尔可夫过程的传导转移概率及工程研究应用[J]. 华中师范大学学报(自然科学版), 2018, 52(6): 773–777 WANG Feng, GU Jiaojiao, CAO Qian, et al. The transfer probability of Markov process and its application in engineering research[J]. Journal of Central China Normal University (Natural Sciences), 2018, 52(6): 773–777 [24] 刘建伟, 高峰, 罗雄麟. 基于值函数和策略梯度的深度强化学习综述[J]. 计算机学报, 2019, 42(6): 1406–1438 LIU Jianwei, GAO Feng, LUO Xionglin. Survey of deep reinforcement learning based on value function and policy gradient[J]. Chinese Journal of Computers, 2019, 42(6): 1406–1438 [25] 杨朋朋, 王蓓蓓, 胥鹏, 等. 不完全信息下基于深度双Q网络的发电商三段式竞价策略[J]. 中国电力, 2021, 54(11): 47–58 YANG Pengpeng, WANG Beibei, XU Peng, et al. Three-stage bidding strategy of generation company based on double deep Q-network under incomplete information condition[J]. Electric Power, 2021, 54(11): 47–58
|