中国电力 ›› 2024, Vol. 57 ›› Issue (8): 206-213.DOI: 10.11930/j.issn.1004-9649.202310020
孔志恒1(), 谭冲1(
), 唐培耀1, 胡成博2, 郑敏1
收稿日期:
2023-10-09
接受日期:
2024-03-12
出版日期:
2024-08-28
发布日期:
2024-08-24
作者简介:
孔志恒(2000—),男,硕士研究生,从事电力物联网、无线传感器网络研究,E-mail:kzh5915@mail.sim.ac.cn基金资助:
Zhiheng KONG1(), Chong TAN1(
), Peiyao TANG1, Chengbo HU2, Min ZHENG1
Received:
2023-10-09
Accepted:
2024-03-12
Online:
2024-08-28
Published:
2024-08-24
Supported by:
摘要:
在智能电网中,精确监测输电、配电及供电关键设备的运行状态对在线运维至关重要。面对人工抄录和巡检的低效,以及监测装置数字化升级的复杂安装、高成本和长周期等挑战,结合图像采集装置与图像处理技术,根据计算资源合理分配任务,开发了一种基于Light-Resnet数值识别算法,该算法通过D-Add损失函数优化网络训练过程,实现电力设备监测数据的远程读取。实验表明:Light-Resnet以
孔志恒, 谭冲, 唐培耀, 胡成博, 郑敏. 基于Light-Resnet卷积神经网络的电力设备监测数值识别算法[J]. 中国电力, 2024, 57(8): 206-213.
Zhiheng KONG, Chong TAN, Peiyao TANG, Chengbo HU, Min ZHENG. Numerical Recognition Algorithm for Power Equipment Monitoring Based on Light-Resnet Convolutional Neural Network[J]. Electric Power, 2024, 57(8): 206-213.
网络架构 | 权重大小 | |||||
CapsNet | 99.99 | 99.23 | ||||
Light-Resnet | 100.00 | 98.79 | ||||
MOCNN | 99.94 | 96.38 |
表 1 不同网络结构性能对比
Table 1 Performance comparison of different network architectures
网络架构 | 权重大小 | |||||
CapsNet | 99.99 | 99.23 | ||||
Light-Resnet | 100.00 | 98.79 | ||||
MOCNN | 99.94 | 96.38 |
损失函数 | ||||
CEL | 99.97 | 98.45 | ||
HRC | 99.99 | 97.82 | ||
D-ADD | 100.00 | 98.79 | ||
AVG | 99.99 | 97.95 |
表 2 多种损失函数性能对比
Table 2 Performance comparison of multiple loss functions
损失函数 | ||||
CEL | 99.97 | 98.45 | ||
HRC | 99.99 | 97.82 | ||
D-ADD | 100.00 | 98.79 | ||
AVG | 99.99 | 97.95 |
位置 | Edr | Edd | Esend | Esensor | Eother | E | ||||||
边 | 0 | 0 | 49.624 | 1.462 | 6.819 | 57.905 | ||||||
端 | 2.218 | 2.878 | 2.709 | 1.517 | 6.427 | 15.749 | ||||||
边端协同 | 2.211 | 0 | 2.721 | 1.514 | 6.599 | 13.045 |
表 3 端侧能耗对比
Table 3 Terminal-side power consumption comparison 单位:J
位置 | Edr | Edd | Esend | Esensor | Eother | E | ||||||
边 | 0 | 0 | 49.624 | 1.462 | 6.819 | 57.905 | ||||||
端 | 2.218 | 2.878 | 2.709 | 1.517 | 6.427 | 15.749 | ||||||
边端协同 | 2.211 | 0 | 2.721 | 1.514 | 6.599 | 13.045 |
1 | 李博, 高志远. 人工智能技术在智能电网中的应用分析和展望[J]. 中国电力, 2017, 50 (12): 136- 140. |
LI Bo, GAO Zhiyuan. Analysis and prospect on the application of artificial intelligence technologies in smart grid[J]. Electric Power, 2017, 50 (12): 136- 140. | |
2 | 白钒, 胡杰, 何鹏, 等. 基于物联网技术的智能电网基础设施建设数字化管理平台研究[J]. 机械与电子, 2022, 40 (10): 77- 80. |
BAI Fan, HU Jie, HE Peng, et al. Research on digital management platform for smart grid infrastructure construction based on Internet of Things technology[J]. Machinery & Electronics, 2022, 40 (10): 77- 80. | |
3 | ZHAO S T, LI B S, YUAN J S, et al. Research on remote meter automatic reading based on computer vision[C]//2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific. Dalian, China. IEEE, 2005: 1–4. |
4 | EDWARD V C P. Support vector machine based automatic electric meter reading system[C]//2013 IEEE International Conference on Computational Intelligence and Computing Research. Enathi, India. IEEE, 2013: 1–5. |
5 | RODRİGUEZ M, BERDUGO G, JABBA D, et al. HD_MR: a new algorithm for number recognition in electrical meters[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2014, 22, 87- 96. |
6 | 陈英, 李磊, 汪文源, 等. 家用水表字符的识别算法研究[J]. 现代电子技术, 2018, 41 (18): 99- 103. |
CHEN Ying, LI Lei, WANG Wenyuan, et al. Research on character recognition algorithm for domestic water meter[J]. Modern Electronics Technique, 2018, 41 (18): 99- 103. | |
7 | GÓMEZ L, RUSIÑOL M, KARATZAS D. Cutting sayre’s knot: reading scene text without segmentation. application to utility meters[C]//2018 13th IAPR International Workshop on Document Analysis Systems (DAS). Vienna, Austria. IEEE, 2018: 97-102. |
8 |
YANG F, JIN L W, LAI S X, et al. Fully convolutional sequence recognition network for water meter number reading[J]. IEEE Access, 2019, 7, 11679- 11687.
DOI |
9 | DA SILVA MARQUES R C, COSTA SERRA A, FERREIRA FRANÇA J V, et al. Image-based electric consumption recognition via multi-task learning[C]//2019 8th Brazilian Conference on Intelligent Systems (BRACIS). Salvador, Brazil. IEEE, 2019: 419–424. |
10 | 龚安, 张洋, 唐永红. 基于YOLOv3网络的电能表示数识别方法[J]. 计算机系统应用, 2020, 29 (1): 196- 202. |
GONG An, ZHANG Yang, TANG Yonghong. Automatic reading method of electric energy meter based on YOLOv3[J]. Computer Systems & Applications, 2020, 29 (1): 196- 202. | |
11 | 顾允迪, 徐望明, 何钦. 字轮式仪表智能图像抄表系统的设计[J]. 液晶与显示, 2023, 38 (7): 985- 996. |
GU Yundi, XU Wangming, HE Qin. Design of image-based intelligent meter reading system for wheel meters[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38 (7): 985- 996. | |
12 | 吉训生, 谭凯凯. 基于卷积神经网络的水表读数识别方法[J]. 传感器与微系统, 2020, 39 (12): 130- 133. |
JI Xunsheng, TAN Kaikai. Water meter character recognition method based on CNN[J]. Transducer and Microsystem Technologies, 2020, 39 (12): 130- 133. | |
13 | HAN D, KIM H. A number recognition system with memory optimized convolutional neural network for smart metering devices[C]//2018 International Conference on Electronics, Information, and Communication (ICEIC). Honolulu, HI, USA. IEEE, 2018: 1–4. |
14 |
LI C S, SU Y K, YUAN R, et al. Light-weight spliced convolution network-based automatic water meter reading in smart city[J]. IEEE Access, 2019, 7, 174359- 174367.
DOI |
15 | JUNAGADE S, JAIN P, SARANGI S, et al. Digital display recognition towards connected sensing systems for precision agriculture[C]//2021 IEEE Global Humanitarian Technology Conference (GHTC). Seattle, WA, USA. IEEE, 2021: 155–162. |
16 |
XIU H, HE J, ZHANG X T, et al. HRC-mCNNs: a hybrid regression and classification multibranch CNNs for automatic meter reading with smart shell[J]. IEEE Internet of Things Journal, 2022, 9 (24): 25752- 25766.
DOI |
17 | FAN Z Z, SHI L R, XI C, et al. Real time power equipment meter recognition based on deep learning[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 5017015. |
18 |
DONG Z P, GAO Y, YAN Y H, et al. Vector detection network: an application study on robots reading analog meters in the wild[J]. IEEE Transactions on Artificial Intelligence, 2021, 2 (5): 394- 403.
DOI |
19 | CIPOLLA R, GAL Y, KENDALL A. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 7482–7491. |
20 | EVGENIOU T, PONTIL M. Regularized multi: task learning[C]//Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. Seattle, WA, USA. ACM, 2004: 109–117. |
21 | CARUANA R. Multitask learning[M]//Learning to Learn. Boston, MA: Springer US, 1998: 95–133. |
22 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016: 770–778. |
23 | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Identity mappings in deep residual networks [C]//Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016, 630: 45. |
24 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning - Volume 37. Lille, France. ACM, 2015: 448–456. |
25 | GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[J]. Journal of Machine Learning Research, 2011, 15, 315- 323. |
26 | SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA. ACM, 2017: 3859–3869. |
[1] | 于宗超, 文明, 李湘华, 谢欣涛, 杨洪明. 融合群体智慧的分布式智能电网高效发展管理策略[J]. 中国电力, 2024, 57(10): 57-68. |
[2] | 吴岩, 王光政. 基于CiteSpace的配电网韧性评估与提升研究综述与展望[J]. 中国电力, 2023, 56(12): 100-112, 137. |
[3] | 徐杰, 汪石农. 面向智能电网电压崩溃路径的优化粒子群算法[J]. 中国电力, 2023, 56(1): 142-149. |
[4] | 李峰, 彭慧敏, 袁虎玲, 万芳茹, 黄天罡, 李威. UPFC在线运行优化辅助决策应用功能设计[J]. 中国电力, 2021, 54(7): 76-82. |
[5] | 佘蕊, 张宁池, 王艳茹, 郭丹丹, 马文洁, 刘卉, 张洁. 面向电力物联网的5G通信认知无线电NOMA系统研究[J]. 中国电力, 2021, 54(5): 35-45. |
[6] | 曾永浩, 范心明, 彭元泉, 李新, 张子麒, 宋关羽. 三端柔性多状态开关运行控制与示范应用[J]. 中国电力, 2021, 54(11): 97-103. |
[7] | 柴彬, 刘飞, 江平开, 江秀臣, 黄兴溢. 面向电力设备检测与诊断的压电材料及器件[J]. 中国电力, 2021, 54(10): 105-116. |
[8] | 麻建中, 胡凯波, 於立峰. 工控运维中基于语义分析的智能电网控制攻击防御[J]. 中国电力, 2020, 53(9): 214-220. |
[9] | 李博, 方彤. 北斗卫星导航系统(BDS)在智能电网的应用与展望[J]. 中国电力, 2020, 53(8): 107-116. |
[10] | 贾惠彬, 盖永贺, 李保罡, 郑宏达. 基于强化学习的电力通信网故障恢复方法[J]. 中国电力, 2020, 53(6): 34-40. |
[11] | 曾懿辉, 何通, 郭圣, 熊勇良, 崔颖铷, 左剑, 罗昊. 基于差分定位的输电线路多旋翼无人机智能巡检[J]. 中国电力, 2019, 52(7): 24-30. |
[12] | 钱斌, 蔡梓文, 肖勇, 杨劲锋, 董歆滢, 谷科. 基于边缘计算的电表计量系统数据协同检测方案[J]. 中国电力, 2019, 52(11): 145-152. |
[13] | 周静, 孙媛媛, 胡紫巍, 卢利锋, 刘国军. 智能电网信息通信架构演进探讨[J]. 中国电力, 2018, 51(3): 131-135. |
[14] | 王凯军, 郑伟民, 孙可, 靳康萌, 张沛. 智能电网增值业务的调研分析及个性化服务制定[J]. 中国电力, 2018, 51(2): 67-74. |
[15] | 张俊, 王飞跃, 林洁瑜. 平行智能与智慧能源:全面融合人因的社会能源技术[J]. 中国电力, 2018, 51(10): 26-31. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||