[1] 王春雷, 李吉超, 赵明磊. 压电铁电物理[M]. 北京: 科学出版社, 2009. [2] 张瑜瑛, 王本民, 陈桂馨, 等. 锆钛酸铅(PZT)陶瓷的应用与发展[J]. 化学进展, 1992, 4(2): 37–45 [3] GARTEN L M, MOORE D T, NANAYAKKARA S U, et al. The existence and impact of persistent ferroelectric domains in MAPbI3[J]. Science Advances, 2019, 5(1): eaas9311. [4] LI Q, WANG Q. Ferroelectric polymers and their energy-related applications[J]. Macromolecular Chemistry and Physics, 2016, 217(11): 1228–1244. [5] PARK K I, LEE M, LIU Y, et al. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons[J]. Advanced Materials, 2012, 24(22): 2999–3004. [6] SHI K M, SUN B, HUANG X Y, et al. Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators[J]. Nano Energy, 2018, 52: 153–162. [7] FAN F R, TANG W, WANG Z L. Flexible nanogenerators for energy harvesting and self-powered electronics[J]. Advanced Materials, 2016, 28(22): 4283–4305. [8] SENCADAS V, GARVEY C, MUDIE S, et al. Electroactive properties of electrospun silk fibroin for energy harvesting applications[J]. Nano Energy, 2019, 66: 104106. [9] JIANG L M, YANG Y, CHEN R M, et al. Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator[J]. Nano Energy, 2019, 56: 216–224. [10] 杨庆, 孙尚鹏, 司马文霞, 等. 面向智能电网的先进电压电流传感方法研究进展[J]. 高电压技术, 2019, 45(2): 349–367 YANG Qing, SUN Shangpeng, SIMA Wenxia, et al. Progress of advanced voltage/current sensing techniques for smart grid[J]. High Voltage Engineering, 2019, 45(2): 349–367 [11] KAWAMURA K, SAITO H, NOTO F. Development of a high voltage sensor using a piezoelectric transducer and a strain gage[J]. IEEE Transactions on Instrumentation and Measurement, 1988, 37(4): 564–568. [12] PACHECO M, MENDOZA SANTOYO F, MÉNDEZ A, et al. Piezoelectric-modulated optical fibre Bragg grating high-voltage sensor[J]. Measurement Science and Technology, 1999, 10(9): 777–782. [13] ZENG X J, WANG T T, YANG Q, et al. Voltage sensor utilizing inverse piezoelectric effect and fiber grating[C]//2018 IEEE 2nd International Electrical and Energy Conference (CIEEC). Beijing, China. IEEE, 2018: 397-400. [14] XUE F, HU J, WANG S X, et al. Electric field sensor based on piezoelectric bending effect for wide range measurement[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5730–5737. [15] XUE F, HU J, GUO Y, et al. Piezoelectric–piezoresistive coupling MEMS sensors for measurement of electric fields of broad bandwidth and large dynamic range[J]. IEEE Transactions on Industrial Electronics, 2020, 67(1): 551–559. [16] 张强. 电力电缆局部放电检测与模式识别的研究[D]. 天津: 天津大学, 2007. ZHANG Qiang. Study on PD detection and pattern recognition for power cables[D]. Tianjin: Tianjin University, 2007. [17] 姚维强, 司文荣, 吕佳明, 等. EFPI光纤超声传感器及其潜在局放检测应用综述[J]. 高电压技术, 2020, 46(6): 1855–1866 YAO Weiqiang, SI Wenrong, LÜ Jiaming, et al. Review on EFPI fiber-based ultrasonic sensors and its potentially partial discharge detection application[J]. High Voltage Engineering, 2020, 46(6): 1855–1866 [18] MO X W, ZHOU H, LI W B, et al. Piezoelectrets for wearable energy harvesters and sensors[J]. Nano Energy, 2019, 65: 104033. [19] PALITÓ T T C, ASSAGRA Y A O, DA SILVA J F R, et al. Acoustic detection of single and multiple air-gap partial discharges with piezoelectrets transducers[C]//2014 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). Des Moines, IA, USA. IEEE, 2014: 216–219. [20] PAGI FERREIRA D A, CORRÊA ALTAFIM R A, INOCÊNCIO DE SOUSA F S, et al. Detection of acoustic emissions from partial discharges in distribution transformers with piezoelectret transducers[C]//2017 IEEE Conference on Electrical Insulation and Dielectric Phenomenon (CEIDP). Fort Worth, TX, USA. IEEE, 2017: 381–384. [21] 代显智, 张章. 用于自供能传感器的环境能量源研究[J]. 电源技术, 2012, 36(3): 440–443 DAI Xianzhi, ZHANG Zhang. Study on ambient energy sources for self-powering sensors[J]. Chinese Journal of Power Sources, 2012, 36(3): 440–443 [22] KO W H. Piezoelectric energy converter for electronic implants: U. S. Patent 3, 456, 134[P]. 1969-07-15. [23] 郝本良. 压电式自供能无线传感器节点关键技术研究[D]. 徐州: 中国矿业大学, 2019. HE Benliang. Research on key technologies of piezoelectric self-powered wireless sensor node [D]. Xuzhou: China University of Mining & Technology, 2019. [24] SHU Y C, LIEN I C. Analysis of power output for piezoelectric energy harvesting systems[J]. Smart Materials and Structures, 2006, 15(6): 1499–1512. [25] LI P W, LIU Y, WANG Y F, et al. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure[J]. AIP Advances, 2015, 5(4): 047151. [26] ZHOU G B, LI Z X, ZHU Z C, et al. A new piezoelectric bimorph energy harvester based on the vortex-induced-vibration applied in rotational machinery[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(2): 700–709. [27] FAN K Q, LIU S H, LIU H Y, et al. Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester[J]. Applied Energy, 2018, 216: 8–20. [28] ABASIAN A, TABESH A, REZAEI-HOSSEINABADI N, et al. Vacuum-packaged piezoelectric energy harvester for powering smart grid monitoring devices[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4447–4456. [29] NIE X C, TAN T, YAN Z M, et al. Ultra-wideband piezoelectric energy harvester based on Stockbridge damper and its application in smart grid[J]. Applied Energy, 2020, 267: 114898. [30] WANG Z L. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242–246. [31] XU S, QIN Y, XU C, et al. Self-powered nanowire devices[J]. Nature Nanotechnology, 2010, 5(5): 366–373. [32] PARK K I, BAE S B, YANG S H, et al. Lead-free BaTiO3nanowires-based flexible nanocomposite generator[J]. Nanoscale, 2014, 6(15): 8962. [33] PARK K I, SON J H, HWANG G T, et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates[J]. Advanced Materials, 2014, 26(16): 2514–2520. [34] YAN J H, HAN Y H, XIA S H, et al. Polymer template synthesis of flexible BaTiO3 crystal nanofibers[J]. Advanced Functional Materials, 2019, 29(51): 1907919. [35] WANG X, SONG J, LIU J, et al. Direct-current nanogenerator driven by ultrasonic waves[J]. Science, 2007, 316(5821): 102–105. [36] WU Y H, QU J K, DAOUD W A, et al. Flexible composite-nanofiber based piezo-triboelectric nanogenerators for wearable electronics[J]. Journal of Materials Chemistry A, 2019, 7(21): 13347–13355. [37] ZHANG G Z, ZHAO P, ZHANG X S, et al. Flexible three-dimensional interconnected piezoelectric ceramic foam based composites for highly efficient concurrent mechanical and thermal energy harvesting[J]. Energy & Environmental Science, 2018, 11(8): 2046–2056.
|