中国电力 ›› 2023, Vol. 56 ›› Issue (1): 142-149.DOI: 10.11930/j.issn.1004-9649.202102037

• 电网 • 上一篇    下一篇

面向智能电网电压崩溃路径的优化粒子群算法

徐杰, 汪石农   

  1. 高端装备先进感知与智能控制教育部重点实验室(安徽工程大学),安徽 芜湖 241000
  • 收稿日期:2021-02-07 修回日期:2022-11-06 出版日期:2023-01-28 发布日期:2023-01-14
  • 作者简介:徐杰(1978-),男,博士,讲师,从事智能电网及分布式发电等研究,E-mail:lyjhgd@126.com;汪石农(1980-),男,副教授,从事光伏发电与新能源并网等研究,E-mail:wsn@ahpu.edu.cn
  • 基金资助:
    安徽省高校自然科学研究重点项目(KJ2021A0491,KJ2021A0508);检测技术与节能装置安徽省重点实验室开放基金项目(DTESD2020A04)。

A Particle Swarm Optimization Algorithm for Smart Grid Voltage Collapse Path

XU Jie, WANG Shinong   

  1. Key Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, Ministry of Education, Anhui Polytechnic University, Wuhu 241000, China
  • Received:2021-02-07 Revised:2022-11-06 Online:2023-01-28 Published:2023-01-14
  • Supported by:
    This work is supported by Anhui Province Key Projects of Natural Science Research in Colleges and Universities (No.KJ2021A0491, No.KJ2021A0508) and Open Research Fund of Anhui Key Laboratory of Detection Technology and Energy Saving Devices (No.DTESD2020A04).

摘要: 随着智能电网系统的研究深入,针对复杂智能电网系统的电压崩溃路径,研究了基于智能电网系统的等效模型。通过AGENT图分析了系统脆性关系,采用一种在脆性发生时崩溃路径优化粒子群算法,给出系统内部的脆性对于系统稳定性的影响,发现脆性激发时崩溃传递路径具有多样性的解,并分析了崩溃路径。基于35 kV智能电网一次系统模型,通过对智能电网脆性电压崩溃路径的预测和控制,有效优化了整个系统性能,对智能电网系统的设计控制具有重要的指导意义。结果表明,智能电网系统节点的崩溃在各子系统层间传递,进而导致整个系统的电压崩溃。

关键词: 智能电网, 粒子群算法, 等效模型, 电压崩溃路径

Abstract: With the deep research of smart grid system, an equivalent model of smart grid system is studied for the voltage collapse path of complex smart grid system, and the brittleness relationship of the system is analyzed with AGENT diagram. An particle swarm optimization algorithm for optimizing the collapse paths when brittleness occurs is used to give the influence of the brittleness inside the system on the system’s stability and the solutions to the multiple collapse transmitting paths when brittleness is excited, and the collapse paths are analyzed. Based on the model of a 35kV smart grid primary system, the overall system performance is effectively optimized through prediction and control of the brittleness voltage collapse path of smart grid, which is of great significance to the design and control of the smart grid systems. The results show that the collapse of smart grid system nodes is transmitted between subsystem layers, which leads to the voltage collapse of the whole system.

Key words: smart grid, particle swarm optimization, equivalent model, voltage collapse path