中国电力 ›› 2026, Vol. 59 ›› Issue (1): 143-152.DOI: 10.11930/j.issn.1004-9649.202501008
• 新型电网 • 上一篇
宁宇杰1(
), 胡书举2(
), 陈怡静3(
), 李春华3(
), 李丰林2(
), 赵大伟1(
)
收稿日期:2025-01-03
修回日期:2025-09-10
发布日期:2026-01-13
出版日期:2026-01-28
作者简介:基金资助:
NING Yujie1(
), HU Shuju2(
), CHEN Yijing3(
), LI Chunhua3(
), LI Fenglin2(
), ZHAO Dawei1(
)
Received:2025-01-03
Revised:2025-09-10
Online:2026-01-13
Published:2026-01-28
Supported by:摘要:
采取直流汇集方案的海上风电场,可避免海底电缆容升效应导致的过电压问题,同时无需笨重的工频变压器,是未来发展的重要方向。首先,建立了基于LLC谐振型变换器的海上直流风电机组详细模型,设计了机组整体的控制策略;然后,基于变换器平均值模型,结合LLC谐振变换器工作原理,对详细模型进行简化得到了电压源等效模型;最后,在不同工况下,对电压源等效模型、详细模型和已有研究建立的电流源等效模型的动态特性进行了分析比较,验证了前者的准确性。所建模型对于开展海上直流风电场接入大电网的稳定分析工作具有实用参考价值。
宁宇杰, 胡书举, 陈怡静, 李春华, 李丰林, 赵大伟. 基于LLC谐振型变换器的海上直流风电机组电压源等效模型[J]. 中国电力, 2026, 59(1): 143-152.
NING Yujie, HU Shuju, CHEN Yijing, LI Chunhua, LI Fenglin, ZHAO Dawei. Voltage source equivalent model of offshore direct current wind turbine based on LLC resonant converter[J]. Electric Power, 2026, 59(1): 143-152.
| 参数 | 取值 |
| 风机容量/MW | 5 |
| 风轮直径/m | 126 |
| 切入风速/(m·s–1) | 4 |
| 额定风速/(m·s–1) | 11.5 |
| 定子线电压/kV | 3.3 |
| 直流母线电压/kV | 5.2 |
| 极对数 | 72 |
| 直轴电感/mH | 9.3 |
| 交轴电感/mH | 9.3 |
| 电枢电阻/ | 0.065 |
| 永磁体磁链/Wb | 26.48 |
| 发电机惯性时间常数/s | 0.84 |
| 风力机等效惯性时间常数/s | 5.54 |
表 1 5 MW海上直流风电机组主要参数
Table 1 Main parameters of the 5 MW offshore DC wind turbine
| 参数 | 取值 |
| 风机容量/MW | 5 |
| 风轮直径/m | 126 |
| 切入风速/(m·s–1) | 4 |
| 额定风速/(m·s–1) | 11.5 |
| 定子线电压/kV | 3.3 |
| 直流母线电压/kV | 5.2 |
| 极对数 | 72 |
| 直轴电感/mH | 9.3 |
| 交轴电感/mH | 9.3 |
| 电枢电阻/ | 0.065 |
| 永磁体磁链/Wb | 26.48 |
| 发电机惯性时间常数/s | 0.84 |
| 风力机等效惯性时间常数/s | 5.54 |
| 参数 | 取值 |
| 输入电压/kV | 5.2 |
| 输出电压/kV | 10.5 |
| 输入功率/MW | 0.12~2.5 |
| 工作频率/kHz | 3.1~5.7 |
| 变压器变比 | 1∶2 |
| 谐振电感/μH | 76.2 |
| 励磁电感/μH | 381.1 |
| 谐振电容/μF | 9.2 |
| 子模块数量 | 2 |
表 2 DC/DC变换器主要参数
Table 2 Main parameters of the DC/DC converter
| 参数 | 取值 |
| 输入电压/kV | 5.2 |
| 输出电压/kV | 10.5 |
| 输入功率/MW | 0.12~2.5 |
| 工作频率/kHz | 3.1~5.7 |
| 变压器变比 | 1∶2 |
| 谐振电感/μH | 76.2 |
| 励磁电感/μH | 381.1 |
| 谐振电容/μF | 9.2 |
| 子模块数量 | 2 |
| 变量 | 电流源模型 | 电压源模型 |
| 0.08 | 0.05 | |
| 0.52 | 0.31 | |
| 0.05 | 0.04 | |
| 0.43 | 0.06 | |
| 0.19 | 0.27 |
表 3 风速波动下简化模型的MAPE
Table 3 MAPE of the simplified model under wind speed fluctuations 单位:%
| 变量 | 电流源模型 | 电压源模型 |
| 0.08 | 0.05 | |
| 0.52 | 0.31 | |
| 0.05 | 0.04 | |
| 0.43 | 0.06 | |
| 0.19 | 0.27 |
| 变量 | 电流源模型 | 电压源模型 |
| 6.40 | 0.41 | |
| 0.40 | 0.02 | |
| 0.49 | 0.22 | |
| 0.41 | 0.05 |
表 4 电压波动下简化模型的MAPE
Table 4 MAPE of the simplified model under voltage fluctuations 单位:%
| 变量 | 电流源模型 | 电压源模型 |
| 6.40 | 0.41 | |
| 0.40 | 0.02 | |
| 0.49 | 0.22 | |
| 0.41 | 0.05 |
| 1 |
季湛洋, 胡阳, 孔令行, 等. 考虑多领域耦合特性的风电机组一次调频动态建模与仿真[J]. 中国电力, 2025, 58 (4): 56- 67.
DOI |
|
JI Zhanyang, HU Yang, KONG Lingxing, et al. Dynamic modeling and simulation of wind turbine unit primary frequency regulation considering multi-domain coupling characteristics[J]. Electric Power, 2025, 58 (4): 56- 67.
DOI |
|
| 2 |
李国栋, 徐明扬. 基于KCR-Informer的长期风电功率预测研究[J]. 电力信息与通信技术, 2024, 22 (4): 55- 62.
DOI |
|
LI Guodong, XU Mingyang. Research on long-term wind power prediction based on KCR-informer[J]. Electric Power Information and Communication Technology, 2024, 22 (4): 55- 62.
DOI |
|
| 3 |
陈小乾, 尹亮, 展宗辉, 等. 基于注意力机制和RCN-BiLSTM融合的风电机组故障识别[J]. 中国电力, 2025, 58 (8): 94- 102.
DOI |
|
CHEN Xiaoqian, YIN Liang, ZHAN Zonghui, et al. Fault identification for wind turbine based on attention mechanism and RCN-BiLSTM fusion[J]. Electric Power, 2025, 58 (8): 94- 102.
DOI |
|
| 4 |
陈阅海, 彭乔, 刘天琪, 等. 考虑电压恢复的风电系统改进分段协调频率控制[J]. 电力工程技术, 2025, 44 (2): 160- 171,196.
DOI |
|
CHEN Yuehai, PENG Qiao, LIU Tianqi, et al. Improved piecewise coordinated frequency control of wind power generation system considering voltage restoration[J]. Electric Power Engineering Technology, 2025, 44 (2): 160- 171,196.
DOI |
|
| 5 |
陶思钰, 江福庆. 集群化发展模式下风电场预测、规划及控制关键技术综述[J]. 电力工程技术, 2024, 43 (1): 86- 99.
DOI |
|
TAO Siyu, JIANG Fuqing. Review of the key technologies of wind farm cluster prediction, planning and control[J]. Electric Power Engineering Technology, 2024, 43 (1): 86- 99.
DOI |
|
| 6 |
杨铎烔, 俞靖一, 葛俊, 等. 海上风电场自适应多目标无功优化控制策略[J]. 电力工程技术, 2024, 43 (3): 121- 129.
DOI |
|
YANG Duotong, YU Jingyi, GE Jun, et al. Adaptive multi-objective reactive power optimization control strategy for offshore wind farms[J]. Electric Power Engineering Technology, 2024, 43 (3): 121- 129.
DOI |
|
| 7 |
黄冬梅, 牟宗凯, 时帅, 等. 考虑复杂海洋状况下的深远海风电场并网系统可靠性评估[J]. 电力科学与技术学报, 2024, 39 (6): 174- 183.
DOI |
|
HAUNG Dongmei, MOU Zongkai, SHI Shuai, et al. Reliability assessment of grid-connected systems in deep-sea offshore wind farmsunder complex oceanic conditions[J]. Journal of Electric Power Science and Technology, 2024, 39 (6): 174- 183.
DOI |
|
| 8 |
姜文瑾, 刘巧妹, 杨晓东, 等. 计及气固两相储氢特性的海上风电-多元储能系统优化配置[J]. 中国电力, 2024, 57 (9): 103- 112.
DOI |
|
JIANG Wenjin, LIU Qiaomei, YANG Xiaodong, et al. Optimal allocation of offshore wind power-multiple energy storage system considering gas-solid two-phase hydrogen storage characteristics[J]. Electric Power, 2024, 57 (9): 103- 112.
DOI |
|
| 9 |
孙均磊, 贾科, 李再男, 等. 基于故障分量时频突变特征的海上风电直流升压送出线路纵联保护[J]. 电力系统保护与控制, 2024, 52 (18): 1- 11.
DOI |
|
SUN Junlei, JIA Ke, LI Zainan, et al. Pilot protection for offshore wind power DC transmission lines based on the time-frequencymutation characteristics of fault components[J]. Power System Protection and Control, 2024, 52 (18): 1- 11.
DOI |
|
| 10 |
刘钟淇, 刘耀, 侯金鸣. 以深远海风电为核心的能源岛能源外送经济性分析[J]. 中国电力, 2024, 57 (9): 94- 102.
DOI |
|
LIU Zhongqi, LIU Yao, HOU Jinming. Economic analysis of energy transmission for energy island based on deep-sea offshore wind farms[J]. Electric Power, 2024, 57 (9): 94- 102.
DOI |
|
| 11 |
边晓燕, 左轩泽, 潘汀莹, 等. 基于编码规划矩阵的海上风电基地送出系统规划方法[J]. 电力系统保护与控制, 2025, 53 (10): 130- 141.
DOI |
|
BIAN Xiaoyan, ZUO Xuanze, PAN Tingying, et al. A planning method for transmission system of offshore wind power base based on a coded planning matrix[J]. Power System Protection and Control, 2025, 53 (10): 130- 141.
DOI |
|
| 12 |
丰力, 张莲梅, 韦家佳, 等. 基于全生命周期经济评估的海上风电发展与思考[J]. 中国电力, 2024, 57 (9): 80- 93.
DOI |
|
FENG Li, ZHANG Lianmei, WEI Jiajia, et al. Development & thinking of offshore wind power based on life cycle economic evaluation[J]. Electric Power, 2024, 57 (9): 80- 93.
DOI |
|
| 13 |
蔡旭, 杨仁炘, 周剑桥, 等. 海上风电直流送出与并网技术综述[J]. 电力系统自动化, 2021, 45 (21): 2- 22.
DOI |
|
CAI Xu, YANG Renxin, ZHOU Jianqiao, et al. Review on offshore wind power integration via DC transmission[J]. Automation of Electric Power Systems, 2021, 45 (21): 2- 22.
DOI |
|
| 14 |
MEYER C, HÖING M, PETERSON A, et al. Control and design of DC grids for offshore wind farms[J]. IEEE Transactions on Industry Applications, 2007, 43 (6): 1475- 1482.
DOI |
| 15 |
TIMMERS V, EGEA-ÀLVAREZ A, GKOUNTARAS A, et al. All-DC offshore wind farms: when are they more cost-effective than AC designs?[J]. IET Renewable Power Generation, 2023, 17 (10): 2458- 2470.
DOI |
| 16 |
赵彪, 安峰, 屈鲁, 等. 多功能直流集电器概念及其全直流海上风电系统[J]. 中国电机工程学报, 2021, 41 (18): 6169- 6180.
DOI |
|
ZHAO Biao, AN Feng, QU Lu, et al. Multi-function DC-collector concept and its all-DC offshore wind power system[J]. Proceedings of the CSEE, 2021, 41 (18): 6169- 6180.
DOI |
|
| 17 |
蔡旭, 施刚, 迟永宁, 等. 海上全直流型风电场的研究现状与未来发展[J]. 中国电机工程学报, 2016, 36 (8): 2036- 2048.
DOI |
|
CAI Xu, SHI Gang, CHI Yongning, et al. Present status and future development of offshore all-DC wind farm[J]. Proceedings of the CSEE, 2016, 36 (8): 2036- 2048.
DOI |
|
| 18 |
AN F, ZHAO B, CUI B, et al. Multi-functional DC collector for future all-DC offshore wind power system: concept, scheme, and implement[J]. IEEE Transactions on Industrial Electronics, 2022, 69 (8): 8134- 8145.
DOI |
| 19 |
GUO G P, SONG Q, ZHAO B, et al. Series-connected-based offshore wind farms with full-bridge modular multilevel converter as grid- and generator-side converters[J]. IEEE Transactions on Industrial Electronics, 2020, 67 (4): 2798- 2809.
DOI |
| 20 |
ZHANG H B, GRUSON F, RODRIGUEZ D M F, et al. Overvoltage limitation method of an offshore wind farm with DC series-parallel collection grid[J]. IEEE Transactions on Sustainable Energy, 2019, 10 (1): 204- 213.
DOI |
| 21 |
江道灼, 谷泓杰, 尹瑞, 等. 海上直流风电场研究现状及发展前景[J]. 电网技术, 2015, 39 (9): 2424- 2431.
DOI |
|
JIANG Daozhuo, GU Hongjie, YIN Rui, et al. Research status and developing prospect of offshore wind farm with pure DC systems[J]. Power System Technology, 2015, 39 (9): 2424- 2431.
DOI |
|
| 22 |
王新颖, 汤广福, 贺之渊, 等. 远海风电场直流汇集用DC/DC变换器拓扑研究[J]. 中国电机工程学报, 2017, 37 (3): 837- 847.
DOI |
|
WANG Xinying, TANG Guangfu, HE Zhiyuan, et al. Topology research of DC/DC converters for offshore wind farm DC collection systems[J]. Proceedings of the CSEE, 2017, 37 (3): 837- 847.
DOI |
|
| 23 |
刘云波, 胡书举, 李丰林, 等. 海上风电直流汇集DC-DC变换器拓扑与控制策略分析[J]. 电测与仪表, 2023, 60 (12): 77- 81.
DOI |
|
LIU Yunbo, HU Shuju, LI Fenglin, et al. Topology and control strategy analysis of offshore wind power DC converters[J]. Electrical Measurement & Instrumentation, 2023, 60 (12): 77- 81.
DOI |
|
| 24 |
ZHANG J, MA K, LEI E, et al. Modeling and controller design of a hybrid input-parallel output-serial modular DC-DC converter for high efficiency and wide output range[J]. IEEE Transactions on Industry Applications, 2023, 59 (3): 3425- 3437.
DOI |
| 25 |
HU P, YIN R, WEI B, et al. Modular isolated LLC DC/DC conversion system for offshore wind farm collection and integration[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9 (6): 6713- 6725.
DOI |
| 26 |
GUAN M Y. A series-connected offshore wind farm based on modular Dual-Active-Bridge (DAB) isolated DC-DC converter[J]. IEEE Transactions on Energy Conversion, 2019, 34 (3): 1422- 1431.
DOI |
| 27 |
肖寒冰, 马建军, 朱淼, 等. 面向海上风电直流升压汇集的非对称双向有源桥DC-DC变换器[J]. 中国电机工程学报, 2025, 45 (7): 2719- 2731.
DOI |
|
XIAO Hanbing, MA Jianjun, ZHU Miao, et al. Asymmetrical bidirectional active bridge DC-DC converter for DC voltage step-up collection in offshore wind farm[J]. Proceedings of the CSEE, 2025, 45 (7): 2719- 2731.
DOI |
|
| 28 |
刘其辉, 洪诚程, 樊双婕, 等. 一种基于二重移相变换的大容量海上直流风机及控制技术[J]. 中国电机工程学报, 2023, 43 (2): 507- 518.
DOI |
|
LIU Qihui, HONG Chengcheng, FAN Shuangjie, et al. One kind of large-scale DC wind turbine and its control technology based on dual phase-shift power conversion[J]. Proceedings of the CSEE, 2023, 43 (2): 507- 518.
DOI |
|
| 29 |
ZENG J, ZHANG G, YU S S, et al. LLC resonant converter topologies and industrial applications—A review[J]. Chinese Journal of Electrical Engineering, 2020, 6 (3): 73- 84.
DOI |
| 30 |
ROBINSON J, JOVCIC D, JOÓS G. Analysis and design of an offshore wind farm using a MVDC grid[J]. IEEE Transactions on Power Delivery, 2010, 25 (4): 2164- 2173.
DOI |
| 31 |
姚良忠, 施刚, 蔡旭, 等. 适用于风场级研究的含机电暂态直流风电机组动态模型[J]. 电网技术, 2016, 40 (2): 465- 470.
DOI |
|
YAO Liangzhong, SHI Gang, CAI Xu, et al. Dynamic modeling of DC wind turbine with electromechanical transients for wind farm studies[J]. Power System Technology, 2016, 40 (2): 465- 470.
DOI |
|
| 32 |
WANG Y, MENG J, ZHANG X, et al. Control of PMSG-based wind turbines for system inertial response and power oscillation damping[J]. IEEE Transactions on Sustainable Energy, 2015, 6 (2): 565- 574.
DOI |
| 33 |
陈载宇, 殷明慧, 蔡晨晓, 等. 一种实现风力机MPPT控制的加速最优转矩法[J]. 自动化学报, 2015, 41 (12): 2047- 2057.
DOI |
|
CHEN Zaiyu, YIN Minghui, CAI Chenxiao, et al. An accelerated optimal torque control of wind turbines for maximum power point tracking[J]. Acta Automatica Sinica, 2015, 41 (12): 2047- 2057.
DOI |
|
| 34 |
胡海兵, 王万宝, 孙文进, 等. LLC谐振变换器效率优化设计[J]. 中国电机工程学报, 2013, 33 (18): 48- 56.
DOI |
|
HU Haibing, WANG Wanbao, SUN Wenjin, et al. Optimal efficiency design of LLC resonant converters[J]. Proceedings of the CSEE, 2013, 33 (18): 48- 56.
DOI |
|
| 35 |
ZHAO S, KEMPITIYA A, CHOU W T, et al. Variable DC-link voltage LLC resonant DC/DC converter with wide bandgap power devices[J]. IEEE Transactions on Industry Applications, 2022, 58 (3): 2965- 2977.
DOI |
| 36 | 戈现勉. 高效率LLC谐振变换器研究[D]. 杭州: 浙江大学, 2015. |
| GE Xianmian. Research on high efficiency LLC resonant converter[D]. Hangzhou: Zhejiang University, 2015. | |
| 37 |
姚良忠, 施刚, 曹远志, 等. 海上直流风电场内网中串联直流风机的变速控制[J]. 电网技术, 2014, 38 (9): 2410- 2415.
DOI |
|
YAO Liangzhong, SHI Gang, CAO Yuanzhi, et al. Variable speed control of series-connected DC wind turbines in the internal grid of offshore DC wind farm[J]. Power System Technology, 2014, 38 (9): 2410- 2415.
DOI |
|
| 38 | TIMMERS V, EGEA-ÀLVAREZ A, GKOUNTARAS A. Frequency optimisation for DC/DC converters in DC-connected offshore wind turbines[C]. 2023 25th European Conference on Power Electronics and Applications (EPE'23 ECCE Europe). IEEE, 2023: 1–8. |
| [1] | 陈瑞, 郑涛, 任翔, 沈文韬, 张璐, 强雨泽, 刘博, 王瑜璇. 电化学储能系统接入条件下正序故障分量方向元件适应性分析[J]. 中国电力, 2025, 58(8): 84-93, 138. |
| [2] | 袁松, 葛昭, 唐佳杰, 梅家葆. 基于复合序电流特征的构网型新能源外送线路纵联保护[J]. 中国电力, 2025, 58(8): 185-192. |
| [3] | 张睿骁, 梁利, 王定美. 新能源场站快速频率响应分析与高效测试装置设计[J]. 中国电力, 2025, 58(5): 144-151. |
| [4] | 万明元, 任鑫, 王渡, 金亚飞, 王志刚, 王廷举, 杨昌宏, 刘昊坤. 100 MW级联式S-CO2循环动态特性研究[J]. 中国电力, 2024, 57(12): 169-177. |
| [5] | 程诺, 陈大才, 陈雪, 阮筱菲, 韦舒清, 韩哲宇. 计及联络开关投切的有源配网电流速断保护定值优化方案[J]. 中国电力, 2024, 57(10): 90-101. |
| [6] | 戴志辉, 柳梅元, 韦舒清, 朱卫平, 王文卓. 基于超导磁储能的光伏场站送出线路距离保护[J]. 中国电力, 2024, 57(10): 102-114. |
| [7] | 冯宝成, 金震, 侯炜, 徐光福. 花瓣型配电网区域备自投系统控制策略优化研究及应用[J]. 中国电力, 2024, 57(1): 244-254. |
| [8] | 石文喆, 李冰洁, 尤培培, 张泠. 基于深度强化学习的建筑能源系统优化策略[J]. 中国电力, 2023, 56(6): 114-122. |
| [9] | 周文俊, 曹毅, 李杰, 金涛, 陈文剑, 周霞. 考虑风电场调控裕度的风火打捆直流外送系统无功电压紧急控制策略[J]. 中国电力, 2023, 56(4): 77-87. |
| [10] | 陈培育, 崇志强, 李树青, 郗晓光, 李振斌, 王慧媛. 基于二级聚集式的端对端电力交易控制策略[J]. 中国电力, 2022, 55(9): 64-69. |
| [11] | 李海涛, 刘北阳, 滕文涛, 李宽, 刘东超, 须雷. 基于可变合闸角的变压器励磁涌流抑制方法[J]. 中国电力, 2022, 55(9): 70-78. |
| [12] | 贺彦强, 王英, 陈小强, 陈剑箫. 计及特征次谐波治理的铁路网侧储能系统控制策略[J]. 中国电力, 2022, 55(7): 33-41. |
| [13] | 周诗嘉, 杨光源, 彭光强, 武霁阳, 辛清明. 基于多相风力发电系统的容错控制策略研究[J]. 中国电力, 2022, 55(7): 134-141. |
| [14] | 曹雅琦, 赵波, 王丽婕, 李相俊, 高彬桓. 基于遗传蚁群的光储电站运行效益提升策略研究[J]. 中国电力, 2022, 55(2): 9-18. |
| [15] | 卢嘉豪, 陈思哲. 双边不对称工况下无网侧变换器型可变频率变压器的控制策略[J]. 中国电力, 2021, 54(12): 29-37. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编