中国电力 ›› 2021, Vol. 54 ›› Issue (5): 46-55.DOI: 10.11930/j.issn.1004-9649.202004026

• 国家“十三五”智能电网重大专项专栏:(七)电力信息通信新技术在能源互联网中的研究与应用专栏 • 上一篇    下一篇

基于多模型融合的CNN-LSTM-XGBoost短期电力负荷预测方法

庄家懿1, 杨国华1,2, 郑豪丰1, 张鸿皓1   

  1. 1. 宁夏大学 物理与电子电气工程学院,宁夏 银川 750021;
    2. 宁夏电力能源安全重点实验室,宁夏 银川 750004
  • 收稿日期:2020-04-05 修回日期:2020-10-30 发布日期:2021-05-05
  • 作者简介:庄家懿(1996-),男,硕士研究生,从事电力系统负荷预测研究,E-,mail:zhjy_ha@126.com;杨国华(1972-),男,通信作者,硕士,教授,从事新能源电力系统自动化技术研究,Email:ygh@nxu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61763040,71263043)

Short-Term Load Forecasting Method Based on Multi-model Fusion Using CNN-LSTM-XGBoost Framework

ZHUANG Jiayi1, YANG Guohua1,2, ZHENG Haofeng1, ZHANG Honghao1   

  1. 1. School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China;
    2. Ningxia Key Laboratory of Electrical Energy Security, Yinchuan 750004, China
  • Received:2020-04-05 Revised:2020-10-30 Published:2021-05-05
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.61763040, No.71263043)

摘要: 短期电力负荷的精准预测可以有效指导机组组合调度、经济调度与电力市场运营。针对输入数据特征量受限时负荷预测的低精度问题,提出一种基于多模型融合的CNN-LSTM-XGBoost短期电力负荷预测方法。通过建立融合局部特征预提取模块的LSTM(long short term memory)网络结构,并将其与XGBoost(eXtreme boosting system)预测模型并行结合,之后结合MAPE-RW(mean absolute percentage error-reciprocal weight)算法进行模型融合初始权重设置,对最佳权重进行搜索,构建最佳融合模型。通过运用电力负荷数据对所提方法进行预测实验,结果表明CNN-LSTM- XGBoost模型的MAPE(mean absolute percentage error)与RMSE(root mean square error)分别为0.377%与148.419 MW,相比于单一网络模型与融合模型结构实现了误差指标的显著降低,验证了基于多模型融合的CNN-LSTM-XGBoost短期电力负荷预测方法具有较快的模型训练速度、较高的预测准确度与较低的预测误差。

关键词: 短期负荷预测, 局部特征预提取, LSTM, XGBoost, 多模型融合

Abstract: Accurate short-term load forecasting can provide effective guidance for unit scheduling, economic dispatch and power market operations. Concerning the low accuracy problem of load forecasting brought by the limited features of input data, a method based on multi-model fusion using CNN-LSTM-XGBoost framework is proposed. The Long Short-Term Memory network structure fused with local feature pre-extraction module is first established and then integrated with the XGBoost prediction model in parallel. Afterwards by using mean absolute percentage error-reciprocal weight algorithm to set initial model fusion weights and start searching for optimal weight, the optimal fusion model is built. From the prediction experiment of load data by virtual of the proposed method, it is discovered that the mean average percentage error and the root mean squared error of CNN-LSTM-XGBoost are 0.337% and 148.419 MW respectively, which indicates significant decrease of the error metrics compared with the outcome using single network model and multi-model structure. Therefore, it is verified that the method based on multi-model fusion using CNN-LSTM-XGBoost framework has faster training speed, higher accuracy and lower error of prediction.

Key words: short-term load forecasting, local feature pre-extraction, long short-term memory, XGBoost, multi-model fusion