中国电力 ›› 2021, Vol. 54 ›› Issue (3): 45-54.DOI: 10.11930/j.issn.1004-9649.202005160

• 国家“十三五”智能电网重大专项专栏:(六)先进计算与人工智能技术专栏 • 上一篇    下一篇

基于DBSCAN-FPN的输电线路螺栓缺销检测方法

赵振兵1, 张帅1, 蒋炜2, 吴鹏3,4   

  1. 1. 华北电力大学 电气与电子工程学院,河北 保定 071003;
    2. 国家电网有限公司,北京 100031;
    3. 全球能源互联网研究院有限公司,北京 102209;
    4. 电力系统人工智能(联研院)国家电网公司联合实验室,北京 102209
  • 收稿日期:2020-05-21 修回日期:2020-10-23 出版日期:2021-03-05 发布日期:2021-03-17
  • 作者简介:赵振兵(1979-),男,博士,副教授,从事电力人工智能研究,E-mail:zhaozhenbing@ncepu.edu.cn;张帅(1994-),男,硕士研究生,从事深度学习、电力部件视觉检测等方面研究,E-mail:18331129289@163.com;蒋炜(1984-),男,博士,高级工程师,从事电力人工智能、区块链、北斗等能源互联网新技术应用研究,E-mail:wei-jiang@sgcc.com.cn;吴鹏(1982-),男,硕士,工程师,从事机器学习、最优化方法、智能电网等方面研究,E-mail:wup@geiri.sgcc.com.cn
  • 基金资助:
    国家自然科学基金资助项目(基于深度视觉知识表达的输电线路螺栓表面状态检测方法研究,61871182);北京市自然科学基金资助项目(面向海量螺栓表面缺陷检测的深度视觉感知和认知模型研究,4192055);河北省自然科学基金资助项目(基于区域解析的输电线路螺栓微视觉缺陷检测模型研究,F2020502009)

Detection Method for Bolts with Mission Pins on Transmission Lines Based on DBSCAN-FPN

ZHAO Zhenbing1, ZHANG Shuai1, JIANG Wei2, WU Peng3,4   

  1. 1. School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China;
    2. State Grid Corporation of China, Beijing 100031, China;
    3. Global Energy Interconnection Research Institute Co., Ltd., Beijing 102209, China;
    4. Artificial Intelligence on Electric Power System State Grid Corporation Joint Laboratory(GEIRI), Beijing 102209, China
  • Received:2020-05-21 Revised:2020-10-23 Online:2021-03-05 Published:2021-03-17
  • Supported by:
    This work is supported by the National Natural Science Foundation of China (Research on Detection Method of Transmission Line Bolt Surface State Based on Deep Visual Knowledge Expression, No.61871182), Beijing Natural Science Foundation (Research on Deep Visual Perception and Cognitive Models for Mass Bolt Surface Defect Detection, No.4192055), Hebei Provincial Natural Science Foundation (Research on Micro-vision Defect Detection Model of Transmission Line Bolts Based on Regional Analysis, No.F2020502009)

摘要: 螺栓作为输电线路上数量最大的紧固件,其缺陷检测是输电线路巡检工作中的一项重要内容。针对螺栓缺销为小目标,其定位困难、特征难提取的问题,提出一种基于DBSCAN算法与FPN模型相结合的螺栓缺销检测方法。首先,利用FPN模型定位螺栓缺销目标区域,同时基于DBSCAN聚类算法对具有相同形态结构的区域进行聚类;然后,改进FPN模型:基于螺栓先验知识,利用卷积网络实现自底向上的特征提取,采用双线性插值方法将特征的高层语义信息自顶向下地传递到各个层级,通过卷积滤波方法横向加强高层语义特征与高分辨率特征的融合信息,获得更优化的螺栓缺销特征表达;利用改进FPN模型实现螺栓缺销的初步检测;最后,采用DBSCAN聚类算法对初步检测结果进行误检甄别,实现了螺栓缺销的精确检测。实验结果表明,DBSCAN-FPN在自建数据集上的检测精度达到76.23%,检测效果优于FPN、R-FCN和Faster R-CNN。所提方法可以有效提高螺栓缺销检测精度,对输电线路运维有实际意义。

关键词: 螺栓, 缺销检测, DBSCAN算法, FPN, 先验知识

Abstract: Bolts are the mostly used fasteners on transmission lines, and their defect detection is an important content for transmission line inspection. As the bolt with missing pins are small targets, their positioning is difficult and their features are hard to extract. Aim at this problem, a detection method for bolts with missing pins is proposed based on the DBSCAN algorithm and FPN model. Firstly, the FPN model is used to locate the target area of the bolts with missing pins, and the areas with same morphological structure are clustered based on the DBSCAN clustering algorithm. Then, the FPN model is improved: based on the prior knowledge of bolts, the convolutional network is used to achieve bottom-up feature extraction, the bilinear interpolation method is used to transfer the high-level semantic information of the features to each level from top to bottom, the convolution filtering method is used to laterally strengthen the information fusion of high-level semantic features and high-resolution features, and a more optimized feature expression of bolts with missing pins is obtained. The improved FPN model is used to realize the preliminary detection of the bolts with missing pins. Finally, the DBSCAN clustering algorithm is adopted to screen the preliminary detection results for error detection, thereby achieving the accurate detection of the bolts with missing pins. Experimental results show that the detection accuracy of DBSCAN-FPN reaches up to 76.23% on the self-built data set, with the detection effect better than FPN, R-FCN and Faster R-CNN. The proposed method can effectively improve the detection accuracy of bolts with missing pins, which has practical significance for the operation and maintenance of transmission lines.

Key words: bolt, pin missing detection, DBSCAN algorithm, FPN, prior knowledge