[1] 刘云鹏, 裴少通, 武建华, 等. 基于深度学习的输变电设备异常发热点红外图片目标检测方法[J]. 南方电网技术, 2019, 13(2): 27-33 LIU Yunpeng, PEI Shaotong, WU Jianhua, et al. Deep learning based target detection method for abnormal hot spots infrared images of transmission and transformation equipment[J]. Southern Power System Technology, 2019, 13(2): 27-33 [2] NGUYEN V N, JENSSEN R, ROVERSO D. Automatic autonomous vision-based power line inspection: a review of current status and the potential role of deep learning[J]. International Journal of Electrical Power & Energy Systems, 2018, 99: 107-120. [3] 赵振兵, 张薇, 翟永杰, 等. 电力视觉技术的概念、研究现状与展望[J]. 电力科学与工程, 2020, 36(1): 1-8 ZHAO Zhenbing, ZHANG Wei, ZHAI Yongjie, et al. Concept, research status and prospect of electric power vision technology[J]. Electric Power Science and Engineering, 2020, 36(1): 1-8 [4] 曾勇斌, 王星华, 彭显刚, 等. 输电线路缺陷风险建模及其预测方法研究[J]. 电力系统保护与控制, 2020, 48(10): 91-98 ZENG Yongbin, WANG Xinghua, PENG Xiangang, et al. Research on risk modeling and forecasting method of transmission line defects[J]. Power System Protection and Control, 2020, 48(10): 91-98 [5] DENG C, WANG S W, HUANG Z, et al. Unmanned aerial vehicles for power line inspection: a cooperative way in platforms and communications[J]. Journal of Communications, 2014, 9(9): 687-692. [6] CHEN J W, LIU Z G, WANG H R, et al. Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(2): 257-269. [7] ZHONG J P, LIU Z G, HAN Z W, et al. A CNN-based defect inspection method for catenary split pins in high-speed railway[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(8): 2849-2860. [8] LIU Z G, ZHONG J P, LYU Y, et al. Location and fault detection of catenary support components based on deep learning[C]//2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Houston, TX, USA. IEEE, 2018: 1-6. [9] ZHANG M, WU J L, LIN H F, et al. The application of one-class classifier based on CNN in image defect detection[J]. Procedia Computer Science, 2017, 114: 341-348. [10] 乔丽, 赵尔敦, 刘俊杰, 等. 基于CNN的工件缺陷检测方法研究[J]. 计算机科学, 2017, 44(增刊2): 238-243 QIAO Li, ZHAO Erdun, LIU Junjie, et al. Research of workpiece defect detection method based on CNN[J]. Computer Science, 2017, 44(S2): 238-243 [11] WU X W, SAHOO D, HOI S C H. Recent advances in deep learning for object detection[J]. Neurocomputing, 2020, 396: 39-64. [12] 冯敏, 罗旺, 余磊, 等. 适用于无人机巡检图像的输电线路螺栓检测方法[J]. 电力科学与技术学报, 2018, 33(4): 135-140 FENG Min, LUO Wang, YU Lei, et al. A bolt detection method for pictures captured from an unmanned aerial vehicle in power transmission line inspection[J]. Journal of Electric Power Science and Technology, 2018, 33(4): 135-140 [13] 王凯, 王健, 刘刚, 等. 基于辅助数据RetinaNet算法的销钉缺陷智能识别[J]. 广东电力, 2019, 32(9): 41-48 WANG Kai, WANG Jian, LIU Gang, et al. RetinaNet algorithm based on auxiliary data for intelligent identification on pin defects[J]. Guangdong Electric Power, 2019, 32(9): 41-48 [14] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[M]//Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 21-37. [15] PINHEIRO P O, LIN T Y, COLLOBERT R, et al. Learning to refine object segments[M]//Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 75-91. [16] HONARI S, YOSINSKI J, VINCENT P, et al. Recombinator networks: learning coarse-to-fine feature aggregation[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016: 5743-5752. [17] GHIASI G, FOWLKES C C. Laplacian pyramid reconstruction and refinement for semantic segmentation[M]//Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 519-534. [18] NEWELL A, YANG K Y, DENG J. Stacked hourglass networks for human pose estimation[M]//Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 483-499. [19] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA. IEEE, 2017: 936-944. [20] KHAN K, REHMAN S U, AZIZ K, et al. DBSCAN: Past, present and future[C]//The Fifth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014). Bangalore, India. IEEE, 2014: 232-238. [21] JAIN A K, MURTY M N, FLYNN P J. Data clustering[J]. ACM Computing Surveys, 1999, 31(3): 264-323. [22] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016: 770-778. [23] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile. IEEE, 2015: 1440-1448. [24] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[M]//Computer Vision - ECCV 2014. Cham: Springer International Publishing, 2014: 346-361. [25] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [26] DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN: Object detection via region-based fully convolution networks[C]//Advances in Neural Information Processing Systems, 2016: 379-387.
|