[1] 秦文科. 钢管输电塔法兰联接节点螺栓脱落损伤诊断的研究[D]. 武汉: 武汉理工大学, 2008. QIN Wenke. Research on the damage detection of bolted looseness on the joint of flange in steel-tube transmission tower structures[D]. Wuhan: Wuhan University of Technology, 2008. [2] 马勇, 夏拥军, 徐铼, 等. 事故工况下悬索式跨越架对输电铁塔的影响及补强措施[J]. 南方电网技术, 2020, 14(12): 58-65 MA Yong, XIA Yongjun, XU Lai, et al. Influence of suspension span frame on transmission tower under accident condition and reinforcement measures[J]. Southern Power System Technology, 2020, 14(12): 58-65 [3] HUMAR J L, AMIN M S. Structural health monitoring[C]//Proceedings of the International Conference on Structural Engineering, Mechanics and Computation. 2-4 April 2001, Cape Town, South Africa. 2001, 2: 1185-1193. [4] 谢从珍, 刘智健, 王江储, 等. 输电铁塔等效缩尺模型风洞倒塌试验研究[J]. 南方电网技术, 2020, 14(4): 61-68 XIE Congzhen, LIU Zhijian, WANG Jiangchu, et al. Test research on the wind-tunnel failure of equivalent scale model of transmission tower[J]. Southern Power System Technology, 2020, 14(4): 61-68 [5] 杜永强, 刘建华, 刘学通, 等. 偏心载荷作用下螺栓连接结构的松动行为研究[J]. 机械工程学报, 2018, 54(14): 74-81 DU Yongqiang, LIU Jianhua, LIU Xuetong, et al. Research on self-loosening behavior of bolted joints under eccentric excitation[J]. Journal of Mechanical Engineering, 2018, 54(14): 74-81 [6] 于泽通, 刘建华, 张朝前, 等. 轴向交变载荷作用下螺栓联接结构的松动试验研究[J]. 摩擦学学报, 2015, 35(6): 732-736 YU Zetong, LIU Jianhua, ZHANG Chaoqian, et al. An experimental study on self-loosening of bolted joints under axial vibration[J]. Tribology, 2015, 35(6): 732-736 [7] 徐超, 周帮友, 刘信恩, 等. 机械螺栓连接状态监测和辨识方法研究进展[J]. 强度与环境, 2009, 36(2): 28-36 XU Chao, ZHOU Bangyou, LIU Xin'en, et al. A review of vibration-based condition monitroring and indentificaiton for mechanical bolted joints[J]. Structure & Environment Engineering, 2009, 36(2): 28-36 [8] SAH S M, THOMSEN J J, BRØNS M, et al. Estimating bolt tightness using transverse natural frequencies[J]. Journal of Sound and Vibration, 2018, 431: 137-149. [9] 何生成. 铁塔螺栓松动检测技术研究[D]. 北京: 北京交通大学, 2018. HE Shengcheng. Research on bolt loosening detection technology of iron tower[D]. Beijing: Beijing Jiaotong University, 2018. [10] 罗文峰, 余岭. 基于特征参数的栓接结合部螺栓预紧力评估[J]. 振动与冲击, 2019, 38(4): 121-128 LUO Wenfeng, YU Ling. Evaluation of bolted joints tightening force based on characteristic parameters[J]. Journal of Vibration and Shock, 2019, 38(4): 121-128 [11] 王子斌, 郭勤涛, 展铭. 基于模型的螺栓松动状态监测方法[J]. 振动. 测试与诊断, 2019, 39(2): 281-285, 441 WANG Zibin, GUO Qintao, ZHAN Ming. Model-based identification of bolt looseness[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(2): 281-285, 441 [12] 屈文忠, 张梦阳, 周俊宇, 等. 螺栓松动损伤的亚谐波共振识别方法[J]. 振动. 测试与诊断, 2017, 37(2): 279-283, 403 QU Wenzhong, ZHANG Mengyang, ZHOU Junyu, et al. Using sub-harmonic resonance to detect bolted joint looseness[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(2): 279-283, 403 [13] ZHANG M Y, SHEN Y F, XIAO L, et al. Application of subharmonic resonance for the detection of bolted joint looseness[J]. Nonlinear Dynamics, 2017, 88(3): 1643-1653. [14] TODD M D, NICHOLS J M, NICHOLS C J, et al. An assessment of modal property effectiveness in detecting bolted joint degradation: theory and experiment[J]. Journal of Sound and Vibration, 2004, 275(3/4/5): 1113-1126. [15] 杜飞, 徐超. 螺栓连接松动的导波监测技术综述[J]. 宇航总体技术, 2018(4): 13-23 DU Fei, XU Chao. A review on bolt preload monitoring using guided waves[J]. Astronautical Systems Engineering Technology, 2018(4): 13-23 [16] YANG J, CHANG F K. Detection of bolt loosening in C-C composite thermal protection panels: I. Diagnostic principle[J]. Smart Materials and Structures, 2006, 15(2): 581-590. [17] HONG M, SU Z Q, WANG Q, et al. Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: Theory, simulation, and experimental validation[J]. Ultrasonics, 2014, 54(3): 770-778. [18] ZHANG Z, LIU M L, LIAO Y Z, et al. Contact acoustic nonlinearity (CAN)-based continuous monitoring of bolt loosening: Hybrid use of high-order harmonics and spectral sidebands[J]. Mechanical Systems and Signal Processing, 2018, 103: 280-294. [19] ZHANG Z, LIU M L, SU Z Q, et al. Quantitative evaluation of residual torque of a loose bolt based on wave energy dissipation and vibro-acoustic modulation: a comparative study[J]. Journal of Sound and Vibration, 2016, 383: 156-170. [20] ZAGRAI A, DOYLE D, ARRITT B. Embedded nonlinear ultrasonics for structural health monitoring of satellite joints[C]//SPIE Smart Structures and Materials Nondestructive Evaluation and Health Monitoring. Proc SPIE 6935, Health Monitoring of Structural and Biological Systems 2008, San Diego, California, USA. 2008, 6935: 693505. [21] ZAGRAI A, GIGINEISHVILI V, KRUSE W A, et al. Acousto-elastic measurements and baseline-free assessment of bolted joints using guided waves in space structures[C]//SPIE Smart Structures and Materials Nondestructive Evaluation and Health Monitoring. Proc SPIE 7650, Health Monitoring of Structural and Biological Systems 2010, San Diego, California, USA. 2010, 7650: 765017. [22] CLAYTON E H, KENNEL M B, FASEL T R, et al. Active ultrasonic joint integrity adjudication for real-time structural health monitoring[C]//SPIE Smart Structures and Materials Nondestructive Evaluation and Health Monitoring. Proc SPIE 6935, Health Monitoring of Structural and Biological Systems 2008, San Diego, California, USA. 2008, 6935: 69350M. [23] CRECRAFT D I. Ultrasonic measurement of stresses[J]. Ultrasonics, 1968, 6(2): 117-121. [24] FROGGATT M E, ALLISON S G. Interrupted ultrasonic bolt load measurements using the pulsed phase-locked loop system[J]. IEEE Transactions on Instrumentation and Measurement, 1996, 45(1): 112-116. [25] KOSHTI A. Ultrasonic measurement of the bending of a bolt in a shear joint[J]. Experimental Mechanics, 1998, 38(4): 270-277. [26] KIM N, HONG M. Measurement of axial stress using mode-converted ultrasound[J]. NDT & E International, 2009, 42(3): 164-169. [27] AMG intellifast launches JointID editor[J]. Sealing Technology, 2015(7): 4. [28] 冉启芳, 费星如, 邓朝栋, 等. 用超声波方法测量螺栓应力[J]. 固体力学学报, 1982, 1(1): 64-70 RAN QIFANG, FEI XINGRU, DENG Chaodong, et al. Application of ultrasonic technique to bolt stress measurement[J]. Acta Mechanica Solida Sinica, 1982, 1(1): 64-70 [29] 刘镇清, 王路. 用超声波技术测量螺栓轴向紧固应力[J]. 测试技术学报, 1997, 11(1): 32-37 LIU Zhenqing, WANG Lu. The measurement of axial stress in bolts by using ultrasonic technique[J]. Journal of Test and Measurement Technology, 1997, 11(1): 32-37 [30] 何存富, 吴克成. 扭转剪应力对螺栓紧固应力声弹性测量的影响研究[J]. 固体力学学报, 1992, 13(4): 337-342 HE Cunfu, WU Kecheng. Influence of shear stress on the ultrasonic measurement of the axial stress of high strength bolts[J]. Acta Mechanica Solida Sinica, 1992, 13(4): 337-342 [31] 何存富, 吴克成. 温度对螺栓紧固应力超声测量的影响研究[J]. 实验力学, 1992, 7(3): 238-244 HE Cunfu, WU Kecheng. Influence of temperature on ultrasonic measurement of axial stress in high strength bolts[J]. Journal of Experimental Mechanics, 1992, 7(3): 238-244 [32] 韩玉强, 吴付岗, 李明海, 等. 声弹性螺栓应力测量影响因素[J]. 中南大学学报(自然科学版), 2020, 51(2): 359-366 HAN Yuqiang, WU Fugang, LI Minghai, et al. Factors influencing measurement of bolt stress based on acoustoelastic effect[J]. Journal of Central South University (Science and Technology), 2020, 51(2): 359-366 [33] 张俊. 基于声弹性原理的超声波螺栓紧固力测量技术研究[D]. 杭州: 浙江大学, 2005. ZHANG Jun. Research on the ultrasonic measurement technology of bolt tension based on the sono-elasticity principle[D]. Hangzhou: Zhejiang University, 2005. [34] 贾雪. 基于声弹性效应的螺栓轴向应力检测系统研究[D]: 成都: 西南交通大学, 2018. JIA Xue. Research on bolt axial stress detection system based on acoustoelastic effect[D]. Chengdu: Southwest Jiaotong University, 2018. [35] 潘勤学, 邵唱, 肖定国, 等. 基于形状因子的螺栓紧固力超声检测方法研究[J]. 兵工学报, 2019, 40(4): 880-888 PAN Qinxue, SHAO Chang, XIAO Dingguo, et al. Study of ultrasonic measurement method for bolt fastening force based on shape factor[J]. Acta Armamentarii, 2019, 40(4): 880-888 [36] FENG D M, FENG M Q. Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage detection: a review[J]. Engineering Structures, 2018, 156: 105-117. [37] HUYNH T C, PARK J H, JUNG H J, et al. Quasi-autonomous bolt-loosening detection method using vision-based deep learning and image processing[J]. Automation in Construction, 2019, 105: 102844.1-102844.18. [38] PARK J H, HUYNH T C, CHOI S H, et al. Vision-based technique for bolt-loosening detection in wind turbine tower[J]. Wind and Structures, 2015, 21(6): 709-726. [39] CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679-698. [40] CHA Y J, YOU K, CHOI W. Vision-based detection of loosened bolts using the Hough transform and support vector machines[J]. Automation in Construction, 2016, 71: 181-188. [41] RAMANA L, CHOI W, CHA Y J. Fully automated vision-based loosened bolt detection using the Viola-Jones algorithm[J]. Structural Health Monitoring, 2019, 18(2): 422-434. [42] 刘煜. 基于数字图像处理的螺栓松动检测研究[D]. 大连: 大连理工大学, 2019. LIU Yu. Research on the bolt loosening detection based on digital image processing technology[D]. Dalian: Dalian University of Technology, 2019. [43] 王宝丽. 基于深度学习的中低速磁浮F轨螺栓松动识别研究[D]. 成都: 西南交通大学, 2019. WANG Baoli. Research on bolt loosening recognition of medium and low speed maglev f-rail based on deep learning[D]. Chengdu: Southwest Jiaotong University, 2019. [44] 刘超华, 林亚军, 王述运. 基于机器视觉高空飞机螺栓松动监测仿真[J]. 计算机仿真, 2014, 31(12): 84-87 LIU Chaohua, LIN Yajun, WANG Shuyun. The high-altitude plane bolt looseness monitoring based on machine vision[J]. Computer Simulation, 2014, 31(12): 84-87 [45] 蔡红梅, 张转芳, 张光利. 基于图像处理的螺栓松动智能监测方法研究[J]. 计算机仿真, 2015, 32(10): 94-96, 359 CAI Hongmei, ZHANG Zhuanfang, ZHANG Guangli. Unmanned aerial vehicle(UAV) is loose monitoring method based on image monitoring research[J]. Computer Simulation, 2015, 32(10): 94-96, 359 [46] 李振宇, 郭锐, 赖秋频, 等. 基于计算机视觉的架空输电线路机器人巡检技术综述[J]. 中国电力, 2018, 51(11): 139-146 LI Zhenyu, GUO Rui, LAI Qiupin, et al. Survey of inspection technology of overhead transmission line robot based on computer vision[J]. Electric Power, 2018, 51(11): 139-146
|