中国电力 ›› 2025, Vol. 58 ›› Issue (2): 164-175.DOI: 10.11930/j.issn.1004-9649.202404069
收稿日期:
2024-04-15
出版日期:
2025-02-28
发布日期:
2025-02-25
作者简介:
胡景成(2002—),男,本科,从事综合能源系统调度研究,E-mail:2364146874@qq.com基金资助:
Jingcheng HU1(), Yunhao FAN1, Tong ZHU1, Zhenping CHEN1,2,3(
)
Received:
2024-04-15
Online:
2025-02-28
Published:
2025-02-25
Supported by:
摘要:
针对综合能源系统分布式调度过程中的隐私泄露问题,考虑分布式调度节点功率受限特性,提出了一种基于同态加密的完全一致性低碳经济调度方法。首先,对系统中供能单元和用能负载进行功率分析,建立综合经济性和低碳性的能源系统调度模型,引入供需不匹配状态估计变量,提出一种完全分布式一致性低碳经济调度算法。其次,利用同态密码学设计基于同态加密理论的信息交互策略,使节点在不泄露自身隐私数据的前提下与邻居节点安全地交换状态信息。同时同态加密技术允许直接在密文上进行运算,并确保解密后的结果与明文的直接计算结果一致,从而保证了低碳经济调度的准确性。最后,通过数值仿真实验验证了所提调度算法的有效性。
中图分类号:
胡景成, 范耘豪, 朱同, 陈珍萍. 基于同态加密的综合能源系统完全分布式低碳经济调度[J]. 中国电力, 2025, 58(2): 164-175.
Jingcheng HU, Yunhao FAN, Tong ZHU, Zhenping CHEN. Distributed Low-Carbon Economic Dispatch for Integrated Energy System Based on Homomorphic Encryption[J]. Electric Power, 2025, 58(2): 164-175.
子系统 | 参数 | |||||||
1 | 0.673 | 6.0 | 0.599 | 0.223 | ||||
2 | 0.337 | 6.5 | 0.526 | 0.215 | ||||
3 | 0.241 | 6.2 | 0.561 | 0.147 | ||||
4 | 0.241 | 3.0 | 0.502 | 0.153 | ||||
5 | 0.069 | 3.0 | 0.582 | 0.225 | ||||
6 | 0.080 | 5.1 | 0.554 | 0.196 | ||||
7 | 0.028 | 2.8 | 0.550 | 0.201 | ||||
8 | 0.018 | 5.3 | 0.573 | 0.182 | ||||
9 | 0.090 | 3.2 | 0.511 | 0.213 | ||||
10 | 0.077 | 4.5 | 0.551 | 0.125 | ||||
11 | 0.029 | 5.9 | 0.569 | 0.185 | ||||
12 | 0.070 | 5.5 | 0.548 | 0.224 | ||||
13 | 0.039 | 3.4 | 0.560 | 0.184 | ||||
14 | 0.026 | 5.8 | 0.558 | 0.177 |
表 2 系统供热单元仿真参数设置
Table 2 Parameter settings for heating supply unit simulation
子系统 | 参数 | |||||||
1 | 0.673 | 6.0 | 0.599 | 0.223 | ||||
2 | 0.337 | 6.5 | 0.526 | 0.215 | ||||
3 | 0.241 | 6.2 | 0.561 | 0.147 | ||||
4 | 0.241 | 3.0 | 0.502 | 0.153 | ||||
5 | 0.069 | 3.0 | 0.582 | 0.225 | ||||
6 | 0.080 | 5.1 | 0.554 | 0.196 | ||||
7 | 0.028 | 2.8 | 0.550 | 0.201 | ||||
8 | 0.018 | 5.3 | 0.573 | 0.182 | ||||
9 | 0.090 | 3.2 | 0.511 | 0.213 | ||||
10 | 0.077 | 4.5 | 0.551 | 0.125 | ||||
11 | 0.029 | 5.9 | 0.569 | 0.185 | ||||
12 | 0.070 | 5.5 | 0.548 | 0.224 | ||||
13 | 0.039 | 3.4 | 0.560 | 0.184 | ||||
14 | 0.026 | 5.8 | 0.558 | 0.177 |
子系统 | 参数 | |||||||
1 | 0.280 | 60.0 | 0.90 | 0.25 | ||||
2 | 0.192 | 65.0 | 0.85 | 0.18 | ||||
3 | 0.172 | 62.0 | 0.89 | 0.12 | ||||
4 | 0.252 | 30.0 | 0.91 | 0.23 | ||||
5 | 0.023 | 30.0 | 0.82 | 0.28 | ||||
6 | 0.081 | 50.0 | 0.93 | 0.16 | ||||
7 | 0.012 | 30.0 | 0.83 | 0.15 | ||||
8 | 0.081 | 60.0 | 0.86 | 0.14 | ||||
9 | 0.093 | 30.0 | 0.92 | 0.11 | ||||
10 | 0.011 | 45.0 | 0.80 | 0.22 | ||||
11 | 0.011 | 59.0 | 0.88 | 0.13 | ||||
12 | 0.057 | 55.0 | 0.95 | 0.17 | ||||
13 | 0.024 | 60.0 | 0.84 | 0.19 | ||||
14 | 0.056 | 58.0 | 0.81 | 0.26 |
表 1 系统供电单元仿真参数设置
Table 1 Parameter settings for power supply unit simulation
子系统 | 参数 | |||||||
1 | 0.280 | 60.0 | 0.90 | 0.25 | ||||
2 | 0.192 | 65.0 | 0.85 | 0.18 | ||||
3 | 0.172 | 62.0 | 0.89 | 0.12 | ||||
4 | 0.252 | 30.0 | 0.91 | 0.23 | ||||
5 | 0.023 | 30.0 | 0.82 | 0.28 | ||||
6 | 0.081 | 50.0 | 0.93 | 0.16 | ||||
7 | 0.012 | 30.0 | 0.83 | 0.15 | ||||
8 | 0.081 | 60.0 | 0.86 | 0.14 | ||||
9 | 0.093 | 30.0 | 0.92 | 0.11 | ||||
10 | 0.011 | 45.0 | 0.80 | 0.22 | ||||
11 | 0.011 | 59.0 | 0.88 | 0.13 | ||||
12 | 0.057 | 55.0 | 0.95 | 0.17 | ||||
13 | 0.024 | 60.0 | 0.84 | 0.19 | ||||
14 | 0.056 | 58.0 | 0.81 | 0.26 |
子系统 | 参数 | |||||||
1 | 0.257 | 22.6 | 0.558 | 0.166 | ||||
2 | 0.158 | 10.5 | 0.483 | 0.174 | ||||
3 | 0.214 | 11.2 | 0.622 | 0.129 | ||||
4 | 0.280 | 10.8 | 0.581 | 0.192 | ||||
5 | 0.046 | 3.6 | 0.485 | 0.167 | ||||
6 | 0.058 | 5.1 | 0.623 | 0.165 | ||||
7 | 0.073 | 3.3 | 0.522 | 0.150 | ||||
8 | 0.062 | 4.2 | 0.446 | 0.160 | ||||
9 | 0.018 | 3.1 | 0.618 | 0.161 | ||||
10 | 0.051 | 4.5 | 0.452 | 0.133 | ||||
11 | 0.010 | 5.9 | 0.494 | 0.185 | ||||
12 | 0.040 | 5.5 | 0.481 | 0.146 | ||||
13 | 0.055 | 6.2 | 0.595 | 0.169 | ||||
14 | 0.056 | 5.8 | 0.576 | 0.131 |
表 3 系统供气单元仿真参数设置
Table 3 Parameter settings for gas supply unit simulation
子系统 | 参数 | |||||||
1 | 0.257 | 22.6 | 0.558 | 0.166 | ||||
2 | 0.158 | 10.5 | 0.483 | 0.174 | ||||
3 | 0.214 | 11.2 | 0.622 | 0.129 | ||||
4 | 0.280 | 10.8 | 0.581 | 0.192 | ||||
5 | 0.046 | 3.6 | 0.485 | 0.167 | ||||
6 | 0.058 | 5.1 | 0.623 | 0.165 | ||||
7 | 0.073 | 3.3 | 0.522 | 0.150 | ||||
8 | 0.062 | 4.2 | 0.446 | 0.160 | ||||
9 | 0.018 | 3.1 | 0.618 | 0.161 | ||||
10 | 0.051 | 4.5 | 0.452 | 0.133 | ||||
11 | 0.010 | 5.9 | 0.494 | 0.185 | ||||
12 | 0.040 | 5.5 | 0.481 | 0.146 | ||||
13 | 0.055 | 6.2 | 0.595 | 0.169 | ||||
14 | 0.056 | 5.8 | 0.576 | 0.131 |
方法 | 迭代次数 | |||||
电增量成本 | 热增量成本 | 气增量成本 | ||||
文献[ | 184 | 183 | 185 | |||
本文 | 82 | 81 | 79 |
表 4 算法最优性比对结果
Table 4 Algorithm optimality comparison results
方法 | 迭代次数 | |||||
电增量成本 | 热增量成本 | 气增量成本 | ||||
文献[ | 184 | 183 | 185 | |||
本文 | 82 | 81 | 79 |
是否引入碳交易机制 | 系统碳排放量/kg | 碳交易成本/元 | ||
否 | 623.05 | |||
是 | 597.15 |
表 5 碳交易机制引入对比
Table 5 Comparison of the introduction of carbon trading mechanisms
是否引入碳交易机制 | 系统碳排放量/kg | 碳交易成本/元 | ||
否 | 623.05 | |||
是 | 597.15 |
1 | 邓杰, 姜飞, 王文烨, 等. 考虑电热柔性负荷与氢能精细化建模的综合能源系统低碳运行[J]. 电网技术, 2022, 46 (5): 1692- 1702. |
DENG Jie, JIANG Fei, WANG Wenye, et al. Low-carbon optimized operation of integrated energy system considering electric-heat flexible load and hydrogen energy refined modeling[J]. Power System Technology, 2022, 46 (5): 1692- 1702. | |
2 | 李欣, 陈英彰, 李涵文, 等. 考虑碳交易的电-热综合能源系统两阶段鲁棒优化低碳经济调度[J]. 电力建设, 2024, 45 (6): 58- 69. |
LI Xin, CHEN Yingzhang, LI Hanwen, et al. Two-stage robust optimization of low-carbon economic dispatch for electricity-thermal integrated energy system considering carbon trade[J]. Electric Power Construction, 2024, 45 (6): 58- 69. | |
3 | 王永利, 韩煦, 刘晨, 等. 基于生-光耦合利用的乡村电-热综合能源系统规划[J]. 电力建设, 2023, 44 (3): 1- 14. |
WANG Yongli, HAN Xu, LIU Chen, et al. Rural electricity-heat integrated energy system planning based on coupling utilization of biomass and solar resources[J]. Electric Power Construction, 2023, 44 (3): 1- 14. | |
4 | 崔文倩, 魏军强, 赵云灏, 等. 双碳目标下含重力储能的配电网多目标运行优化[J]. 电力建设, 2023, 44 (4): 45- 53. |
CUI Wenqian, WEI Junqiang, ZHAO Yunhao, et al. Multi-objective operation optimization of distribution network with gravity energy storage under double carbon target[J]. Electric Power Construction, 2023, 44 (4): 45- 53. | |
5 | 黎静华, 朱梦姝, 陆悦江, 等. 综合能源系统优化调度综述[J]. 电网技术, 2021, 45 (6): 2256- 2269. |
LI Jinghua, ZHU Mengshu, LU Yuejiang, et al. Review on optimal scheduling of integrated energy systems[J]. Power System Technology, 2021, 45 (6): 2256- 2269. | |
6 |
张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46 (8): 189- 207.
DOI |
ZHANG Shenxi, WANG Danyang, CHENG Haozhong, et al. Key technologies and challenges of low-carbon integrated energy system planning for carbon emission peak and carbon neutrality[J]. Automation of Electric Power Systems, 2022, 46 (8): 189- 207.
DOI |
|
7 | 原希尧, 王关涛, 朱若源, 等. 碳-绿色证书交易机制下考虑回收P2G余热和需求响应的PIES优化调度[J]. 电力建设, 2023, 44 (3): 25- 35. |
YUAN Xiyao, WANG Guantao, ZHU Ruoyuan, et al. Optimal scheduling of park integrated energy system with P2G waste heat recovery and demand response under carbon-green certificate trading mechanism[J]. Electric Power Construction, 2023, 44 (3): 25- 35. | |
8 |
TANG Z Y, HILL D J, LIU T. A novel consensus-based economic dispatch for microgrids[J]. IEEE Transactions on Smart Grid, 2018, 9 (4): 3920- 3922.
DOI |
9 | 米阳, 彭建伟, 陈博洋, 等. 基于一致性原理和梯度下降法的微电网完全分布式优化调度[J]. 电力系统保护与控制, 2022, 50 (15): 1- 10. |
MI Yang, PENG Jianwei, CHEN Boyang, et al. Fully distributed optimal dispatch of a microgrid based on consensus principle and gradient descent[J]. Power System Protection and Control, 2022, 50 (15): 1- 10. | |
10 |
王彬, 孙勇, 吴文传, 等. 协同电网安全性与经济性的新能源优先实时调度方法及应用[J]. 电力系统自动化, 2020, 44 (16): 105- 113.
DOI |
WANG Bin, SUN Yong, WU Wenchuan, et al. Real-time prior dispatch method for renewable energy with safety and economy coordination of power grid and its application[J]. Automation of Electric Power Systems, 2020, 44 (16): 105- 113.
DOI |
|
11 | 崔杨, 郭福音, 仲悟之, 等. 多重不确定性环境下的综合能源系统区间多目标优化调度[J]. 电网技术, 2022, 46 (8): 2964- 2974. |
CUI Yang, GUO Fuyin, ZHONG Wuzhi, et al. Interval multi-objective optimal dispatch of integrated energy system under multiple uncertainty environment[J]. Power System Technology, 2022, 46 (8): 2964- 2974. | |
12 |
张博, 唐巍, 蔡永翔, 等. 基于一致性算法的户用光伏逆变器和储能分布式控制策略[J]. 电力系统自动化, 2020, 44 (2): 86- 94.
DOI |
ZHANG Bo, TANG Wei, CAI Yongxiang, et al. Distributed control strategy of residential photovoltaic inverter and energy storage based on consensus algorithm[J]. Automation of Electric Power Systems, 2020, 44 (2): 86- 94.
DOI |
|
13 |
HAN H C, ZHANG H G, YANG J, et al. Distributed model predictive consensus control for stable operation of integrated energy system[J]. IEEE Transactions on Smart Grid, 2024, 15 (1): 381- 393.
DOI |
14 |
YANG J, SUN F Y, WANG H T. Distributed collaborative optimal economic dispatch of integrated energy system based on edge computing[J]. Energy, 2023, 284, 129194.
DOI |
15 | 贺文, 陈珍萍, 胡伏原, 等. 基于一致性的综合能源系统低碳经济调度[J]. 电力系统保护与控制, 2023, 51 (19): 42- 53. |
HE Wen, CHEN Zhenping, HU Fuyuan, et al. Consensus-based low-carbon economic dispatching of integrated energy systems[J]. Power System Protection and Control, 2023, 51 (19): 42- 53. | |
16 |
HUO X, LIU M X. Privacy-preserving distributed multi-agent cooperative optimization—paradigm design and privacy analysis[J]. IEEE Control Systems Letters, 2022, 6, 824- 829.
DOI |
17 | 高晗, 李正烁. 具有完全隐私保护的电-气综合能源系统分布式协同算法[J]. 电力系统自动化, 2023, 47 (8): 71- 79. |
GAO Han, LI Zhengshuo. Full privacy-preserving decentralized coordination algorithm for integrated electricity-gas energy systems[J]. Automation of Electric Power Systems, 2023, 47 (8): 71- 79. | |
18 | 杨飞生, 刘佳明, 丁瑞森, 等. 基于半同态加密体制的安全分布式经济调度[J/OL]. 控制理论与应用: 1–9[2024-06-17]. http://kns.cnki.net/kcms/detail/44.1240.TP.20240416.0935.022.html. |
YANG Feisheng, LIU Jiaming, DING Ruisen, et al. Secure distributed economic scheduling based on semi-homomorphic encryption system[J/OL]. Control Theory & Applications: 1–9[2024-06-17]. http://kns.cnki.net/kcms/detail/44.1240.TP.20240416.0935.022.html. | |
19 | 樊晓伟, 王瑞妙, 杨海峰, 等. 计及源荷不确定的综合能源微电网集群优化运行[J]. 电力建设, 2024, 45 (8): 128- 139. |
FAN Xiaowei, WANG Ruimiao, YANG Haifeng, et al. Optimization operation of integrated energy microgrid cluster considering source-load uncertainty[J]. Electric Power Construction, 2024, 45 (8): 128- 139. | |
20 |
LIU L N, YANG G H. Distributed optimal energy management for integrated energy systems[J]. IEEE Transactions on Industrial Informatics, 2022, 18 (10): 6569- 6580.
DOI |
21 | 傅观君, 张富强, 夏鹏, 等. 天然气发电在新型电力系统中的功能定位及发展前景研判[J]. 中国电力, 2024, 57 (8): 67- 74. |
FU Guanjun, ZHANG Fuqiang, XIA Peng, et al. Study on the functional orientation and development prospect of natural gas power generation in new power system[J]. Electric Power, 2024, 57 (8): 67- 74. | |
22 | 郭宴秀, 苏建军, 刘洋, 等. 考虑电热交互和共享储能的多综合能源系统运行优化[J]. 中国电力, 2023, 56 (4): 138- 145. |
GUO Yanxiu, SU Jianjun, LIU Yang, et al. Optimal operation of multiple integrated energy systems considering power and heat interaction and shared energy storage system[J]. Electric Power, 2023, 56 (4): 138- 145. | |
23 | 秦婷, 刘怀东, 王锦桥, 等. 基于碳交易的电—热—气综合能源系统低碳经济调度[J]. 电力系统自动化, 2018, 42 (14): 8- 13, 22. |
QIN Ting, LIU Huaidong, WANG Jinqiao, et al. Carbon trading based low-carbon economic dispatch for integrated electricity-heat-gas energy system[J]. Automation of Electric Power Systems, 2018, 42 (14): 8- 13, 22. | |
24 | 崔杨, 曾鹏, 仲悟之, 等. 考虑阶梯式碳交易的电-气-热综合能源系统低碳经济调度[J]. 电力自动化设备, 2021, 41 (3): 10- 17. |
UI Yang, ZENG Peng, ZHONG Wuzhi, et al. Low-carbon economic dispatch of electricity-gas-heat integrated energy system based on ladder-type carbon trading[J]. Electric Power Automation Equipment, 2021, 41 (3): 10- 17. | |
25 |
CHEN W S, LI T. Distributed economic dispatch for energy internet based on multiagent consensus control[J]. IEEE Transactions on Automatic Control, 2021, 66 (1): 137- 152.
DOI |
26 | LI Y, WANG C L, LI G Q, et al. Improving operational flexibility of integrated energy system with uncertain renewable generations considering thermal inertia of buildings[J]. Energy Conversion and Management, 2020, 207, 112526. |
27 | CHEN Y B, YAO Y, ZHANG Y. A robust state estimation method based on SOCP for integrated electricity-heat system[J]. IEEE Transactions on Smart Grid, 2021, 12 (1): 810- 820. |
28 | 陈志, 胡志坚, 翁菖宏, 等. 基于阶梯碳交易机制的园区综合能源系统多阶段规划[J]. 电力自动化设备, 2021, 41 (9): 148- 155. |
CHEN Zhi, HU Zhijian, WENG Changhong, et al. Multi-stage planning of park-level integrated energy system based on ladder-type carbon trading mechanism[J]. Electric Power Automation Equipment, 2021, 41 (9): 148- 155. | |
29 | 张晓辉, 刘小琰, 钟嘉庆. 考虑奖惩阶梯型碳交易和电–热转移负荷不确定性的综合能源系统规划[J]. 中国电机工程学报, 2020, 40 (19): 6132- 6142. |
ZHANG Xiaohui, LIU Xiaoyan, ZHONG Jiaqing. Integrated energy system planning considering a reward and punishment ladder-type carbon trading and electric-thermal transfer load uncertainty[J]. Proceedings of the CSEE, 2020, 40 (19): 6132- 6142. | |
30 | NI L N, LIU W J, WEN F S, et al. Optimal operation of electricity, natural gas and heat systems considering integrated demand responses and diversified storage devices[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6 (3): 423- 437. |
31 | 谢俊, 陈凯旋, 岳东, 等. 基于多智能体系统一致性算法的电力系统分布式经济调度策略[J]. 电力自动化设备, 2016, 36 (2): 112- 117. |
XIE Jun, CHEN Kaixuan, YUE Dong, et al. Distributed economic dispatch based on consensus algorithm of multi agent system for power system[J]. Electric Power Automation Equipment, 2016, 36 (2): 112- 117. |
[1] | 周建华, 梁昌誉, 史林军, 李杨, 易文飞. 计及阶梯式碳交易机制的综合能源系统优化调度[J]. 中国电力, 2025, 58(2): 77-87. |
[2] | 张玉敏, 尹延宾, 吉兴全, 叶平峰, 孙东磊, 宋爱全. 计及热网不同运行状态下灵活性供给能力的综合能源系统优化调度[J]. 中国电力, 2025, 58(2): 88-102. |
[3] | 陆海, 张浩, 陈晓云, 周苏洋. 基于双层博弈的多能源网络协同规划方法[J]. 中国电力, 2025, 58(1): 93-99. |
[4] | 鲁玲, 苑涛, 杨波, 李欣, 鲁洋, 蒲秋平, 张鑫. 计及㶲效率和多重不确定性的区域综合能源系统双层优化[J]. 中国电力, 2025, 58(1): 128-140. |
[5] | 谭玲玲, 汤伟, 楚冬青, 李竞锐, 张玉敏, 吉兴全. 基于主从博弈的电热氢综合能源系统优化运行[J]. 中国电力, 2024, 57(9): 136-145. |
[6] | 高明非, 韩中合, 赵斌, 李鹏, 吴迪. 区域综合能源系统多类型储能协同优化与运行策略[J]. 中国电力, 2024, 57(9): 205-216. |
[7] | 王辉, 周珂锐, 吴作辉, 邹智超, 李欣. 含电转气和碳捕集耦合的综合能源系统多时间尺度优化调度[J]. 中国电力, 2024, 57(8): 214-226. |
[8] | 景巍巍, 王强, 程好, 王博, 岳付昌, 王沉, 王文学. 电热综合能源系统稳态与区间潮流计算快速解耦新方法[J]. 中国电力, 2024, 57(7): 203-213. |
[9] | 苏娟, 李拓, 刘峻玮, 夏越, 杜松怀. 综合能源系统下虚拟储能建模方法与应用场景研究综述及展望[J]. 中国电力, 2024, 57(6): 53-68. |
[10] | 陈兴龙, 曹喜民, 陈洁, 刘俊, 张育超, 包洪印. 绿证-碳交易机制下热电灵活响应的园区综合能源系统优化调度[J]. 中国电力, 2024, 57(6): 110-120. |
[11] | 胡福年, 张彭成, 周小博, 陈军. 计及灵活性资源的综合能源系统源荷协调优化调度[J]. 中国电力, 2024, 57(5): 2-13. |
[12] | 张彩玲, 王爽, 葛淑娜, 潘登, 张岩, 韩伟, 段文岩. 计及灵活需求响应和碳-绿证交易的综合能源系统优化调度[J]. 中国电力, 2024, 57(5): 14-25. |
[13] | 王云龙, 韩璐, 罗树林, 吴涛. 集成电动汽车的家庭电热综合能源系统负荷调度优化[J]. 中国电力, 2024, 57(5): 39-49. |
[14] | 谭玲玲, 汤伟, 楚冬青, 于子涵, 吉兴全, 张玉敏. 考虑电-氢一体化的微电网低碳-经济协同优化调度[J]. 中国电力, 2024, 57(5): 137-148. |
[15] | 李江南, 程韧俐, 周保荣, 刘稼瑾, 毛田, 赵文猛, 王滔, 黄光磊, 许银亮. 含碳捕集及电转氢设备的低碳园区综合能源系统随机优化调度[J]. 中国电力, 2024, 57(5): 149-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||