中国电力 ›› 2026, Vol. 59 ›› Issue (1): 66-75.DOI: 10.11930/j.issn.1004-9649.202507021

• 能源电力数据要素与人工智能应用 • 上一篇    

基于扩散模型的电网数字化系统背景流量生成

孙璇1(), 乔梦妍1(), 李军1(), 申立艳1(), 代海英2(), 郝楠2(), 常启诚3(), 周昊4()   

  1. 1. 北京信息科技大学 计算机学院,北京 102206
    2. 国网新源控股有限公司检修分公司,北京 100053
    3. 美国联邦住房贷款抵押公司,美国 弗吉尼亚州 22102
    4. 国家工业信息安全发展研究中心 工业信息安全感知与评估技术工业和信息化部重点实验室,北京 100040
  • 收稿日期:2025-07-08 修回日期:2025-12-22 发布日期:2026-01-13 出版日期:2026-01-28
  • 作者简介:
    孙璇(1985),女,博士,副教授,从事人工智能、网络安全研究,E-mail:sunxuan@bistu.edu.cn
    乔梦妍(2000),女,硕士研究生,从事网络安全研究,E-mail:2023020968@bistu.edu.cn
    李军(1983),男,通信作者,博士,教授,从事人工智能安全、网络安全研究,E-mail:lijun@bistu.edu.cn
    申立艳(1992),女,博士,副教授,从事人工智能安全、隐私计算研究,E-mail:shenliyan@bistu.edu.cn
    代海英(1978),男,高级工程师,从事信息管理与网络安全研究,E-mail:17337853@qq.com
    郝楠(1984),男,硕士,高级工程师,从事电力信息通信及数字化研究,E-mail:85893173@qq.com
    常启诚(1994),男,从事数据分析、统计学研究,E-mail:clemenchang94@gmail.com
    周昊(1991),男,硕士,工程师,从事工业信息安全、工业互联网安全研究,E-mail:zhouhao39@hotmail.com
  • 基金资助:
    国家自然科学基金资助项目(62302057);国网新源集团有限公司科技项目(SGXYKJ-2025-033)。

Diffusion model-based background traffic generation for power grid digital systems

SUN Xuan1(), QIAO Mengyan1(), LI Jun1(), SHEN Liyan1(), DAI Haiying2(), HAO Nan2(), CHANG Qicheng3(), ZHOU Hao4()   

  1. 1. School of Computer, Beijing Information Science and Technology University, Beijing 102206, China
    2. State Grid Xinyuan Maintenance Branch, Beijing 100053, China
    3. Federal Home Loan Mortgage Corporation, McLean Virginia 22102, America
    4. Key Laboratory Ministry of Industry and Information Technology, China Industrial Control Systems Cyber Emergency Response Team, Beijing 100040, China
  • Received:2025-07-08 Revised:2025-12-22 Online:2026-01-13 Published:2026-01-28
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.62302057) and State Grid XinYuan Group Co., Ltd. Science and Technology Project (No.SGXYKJ-2025-033).

摘要:

为解决当前电网通信背景流量生成方法在协议行为建模、时序依赖捕捉及流量类别控制等方面存在的不足,提出一种基于扩散模型和双向流特征(diffusion models and bidirectional flow,DMBF)的背景流量生成方法。通过改进的流量图像化表示(transforming basic flow data into an intuitive picture,FlowPic)机制提取具有方向性、时间性与包长耦合特征的双向会话图像,结合Transformer实现时序建模;引入条件控制机制为不同类别的流量设定生成比例;通过扩散模型生成背景流量。为验证方法的实用性与通用性,在包含公开流量和来源于实际网络环境的通信数据上进行实验,覆盖多个典型业务场景与交互模式。结果表明,DMBF在生成精度与分布一致性上优于传统生成对抗网络方法,JSD降至28.89%,MAE和RMSE分别为26.24%、30.91%。

关键词: 电力通信, 网络安全, 流量生成, 扩散模型, 特征提取, 深度学习

Abstract:

To address the limitations of current background traffic generation methods in power communication—particularly in modeling protocol behaviors, capturing temporal dependencies, and controlling traffic category distributions—this paper proposes a background traffic generation approach based on diffusion models and bidirectional flow (DMBF). By employing transforms basic flow data into an intuitive picture (FlowPic), we extract bidirectional session images featuring directionality, temporality, and packet-length coupling characteristics. This is combined with a Transformer for temporal modeling. A conditional control mechanism is introduced to adjust the generation ratios of different traffic types, enabling the diffusion model to generate background flows under guided conditions. To evaluate the practicality and generalizability of the proposed method, experiments are conducted on datasets comprising both publicly available traffic samples and real-world network communication data, covering a range of typical business scenarios and interaction patterns. Experimental results show that DMBF outperforms traditional generative adversarial network approaches in terms of generation accuracy and distributional consistency. JSD decreased to 28.89%, with MAE and RMSE at 26.24% and 30.91%, respectively.

Key words: power communication, cyber security, traffic generation, diffusion model, feature extraction, deep learning


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?