[1] 赖奎, 姚军艳, 马承志, 等. 输电线路智能巡检系统的设计研究[J]. 广东电力, 2016, 29(7):105-110 LAI Kui, YAO Junyan, MA Chengzhi, et al. Design research on intelligent inspection system for power transmission lines[J]. Guangdong Electric Power, 2016, 29(7):105-110 [2] 秦科技. 智能高压输电线路巡检机器人设计[D]. 南昌:南昌大学, 2017. [3] 苗向鹏. 基于图像处理的接触网绝缘子识别与破损检测[D]. 成都:西南交通大学, 2017. [4] ZHANG G, ZENG Z, ZHANG S, et al. SIFT matching with CNN evidences for particular object retrieval[J]. Neurocomputing, 2017(5):399-409. [5] 吕一平. 基于HOG特征和LBP特征的人脸识别方法研究[D]. 合肥:安徽大学, 2015. [6] 孙超博. 基于物体内部结构的目标识别及其应用[D]. 北京:北京邮电大学, 2016. [7] 章新. 目标候选区域算法的研究及其应用[D]. 合肥:安徽大学, 2017. [8] 张晶晶, 韩军, 赵亚博, 等. 形状感知的绝缘子识别与缺陷诊断[J]. 中国图象图形学报, 2014, 19(8):1194-1201 ZHANG Jingjing, HAN Jun, ZHAO Yabo, et al. Insulator recognition and defects detection based on shape perceptual[J]. Journal of Image and Graphics, 2014, 19(8):1194-1201 [9] 马帅营, 安居白, 陈舫明. 基于区域定位的绝缘子图像分割[J]. 电力建设, 2010, 31(7):14-17 MA Shuaiying, AN Jubai, CHEN Fangming. Segmentation of the insulator images based on region location[J]. Electric Power Construction, 2010, 31(7):14-17 [10] 黄宵宁, 张真良. 直升机巡检航拍图像中绝缘子图像的提取算法[J]. 电网技术, 2010, 34(1):194-197 HUANG Xiaoning, ZHANG Zhenliang. A method to extract insulator image from aerial image of helicopter patrol[J]. Power System Technology, 2010, 34(1):194-197 [11] 姜云土, 韩军, 丁建, 等. 基于多特征融合的玻璃绝缘子识别及自爆缺陷的诊断[J]. 中国电力, 2017, 50(5):52-58, 64 JIANG Yuntu, HAN Jun, DING Jian, et al. The identification and diagnosis of self-blast defects of glass insulators based on multi-feature fusion[J]. Electric Power, 2017, 50(5):52-58, 64 [12] 林聚财, 韩军, 陈舫明, 等. 基于彩色图像的玻璃绝缘子缺陷诊断[J]. 电网技术, 2011, 35(1):127-133 LIN Juncai, HAN Jun, CHEN Fangming, et al. Defects detection of glass insulator based on color image[J]. Power System Technology, 2011, 35(1):127-133 [13] ZHANG Xinye, AN Jubai, CHEN Fangming. A method of insulator fault detection from airborne images[C]//Proceedings of the 2nd WRI Global Congress on Intelligent Systems. Wuhan:IEEE, 2010:200−203. [14] 高宗, 李少波, 陈济楠, 等. 基于YOLO网络的行人检测方法[J]. 计算机工程, 2017, 43(6):1-6 GAO Zong, LI Shaobo, CHEN Jinan, et al. Pedestrian detection method based on YOLO network[J]. Computer Engineering, 2017, 43(6):1-6 [15] 陈华官. 基于端到端深度卷积神经网络的人脸识别算法[D]. 杭州:浙江大学, 2017. [16] ELLEUCH M, MAALEJ R, KHERALLAH M. A new design based-SVM of the CNN classifier architecture with dropout for offline Arabic handwritten recognition[M]. Netherlands:Elsevier Science Publishers, 2016. [17] TANG P, WANG H, KWONG S. G-MS2F:GoogLeNet based multi-stage feature fusion of deep CNN for scene recognition[J]. Neurocomputing, 2017(2):188-197. [18] 郭忠峰, 唐晓晓, 任仲伟, 等. 基于Canny算子改进的图像边缘检测算法研究[J]. 机械研究与应用, 2017, 30(2):123-125 GUO Zhongfeng, TANG Xiaoxiao, REN Zhongwei, et al. Study on the improved image edge detection algorithm based on Canny algorithm[J]. Mechanical Research & Application, 2017, 30(2):123-125 [19] 杨东华, 李久贤, 卞治国. Marr边缘检测算法的研究[J]. 中国图象图形学报, 2006, 11(6):823-826 YANG Donghua, LI Jiuxian, BIAN Zhiguo. A research on edge detection by Marr algorithm[J]. Journal of Image and Graphics, 2006, 11(6):823-826 [20] 郭丽. 基于RGB颜色空间的彩色图像灰度化算法研究[D]. 西安:陕西师范大学, 2017. |