中国电力 ›› 2024, Vol. 57 ›› Issue (6): 141-152.DOI: 10.11930/j.issn.1004-9649.202305035
宋智伟1(), 黄新波1,2(
), 纪超1, 张凡1, 张烨1
收稿日期:
2023-05-08
接受日期:
2024-01-15
出版日期:
2024-06-28
发布日期:
2024-06-25
作者简介:
宋智伟(1998—),男,硕士,从事基于图像处理和深度学习的故障检测研究,E-mail:2796575906@qq.com基金资助:
Zhiwei SONG1(), Xinbo HUANG1,2(
), Chao JI1, Fan ZHANG1, Ye ZHANG1
Received:
2023-05-08
Accepted:
2024-01-15
Online:
2024-06-28
Published:
2024-06-25
Supported by:
摘要:
输电线路分布情况复杂且故障难以有效检测,其中连接金具长期暴露于复杂环境下易受到恶劣环境的影响出现锈蚀等故障。针对输电线路连接金具部件具有尺度多样性和存在着锈蚀故障检测精度低的问题,提出了一种基于双重注意力嵌入重构和Swin Transformer的输电线路连接金具组件及其锈蚀故障检测方法:PCSA-YOLOv7 Former。实验结果表明:该方法在构建的TLCF数据集上的综合检测性能领先于12类当前先进的目标检测算法,其中在测试集上的mAP0.5达到94.9%,该方法相比于基线模型YOLOv7,其F1和mAP0.5指标分别提升了2.6个百分点和2.2个百分点,说明该方法能够更全面地理解输电线路连接金具图像中的多尺度语义信息并学习到不易区分的微小细节表征。
宋智伟, 黄新波, 纪超, 张凡, 张烨. 基于PCSA-YOLOv7 Former的输电线路连接金具及其锈蚀检测方法[J]. 中国电力, 2024, 57(6): 141-152.
Zhiwei SONG, Xinbo HUANG, Chao JI, Fan ZHANG, Ye ZHANG. Transmission Line Connection Fittings and Corrosion Detection Method Based on PCSA-YOLOv7 Former[J]. Electric Power, 2024, 57(6): 141-152.
类别 | P | R | F1 | mAP0.5 | ||||
U形挂环 (US) | 0.962 | 0.867 | 0.912 | 0.938 | ||||
三角联板 (TYP) | 0.936 | 0.989 | 0.962 | 0.993 | ||||
调整板 (ADP) | 0.867 | 0.932 | 0.898 | 0.963 | ||||
耐张线夹 (TEC) | 0.785 | 0.836 | 0.811 | 0.828 | ||||
紧固螺栓 (CLB) | 0.855 | 0.967 | 0.908 | 0.968 | ||||
绝缘子 (In) | 0.998 | 1.000 | 0.998 | 0.996 | ||||
所有 (All) | 0.902 | 0.932 | 0.917 | 0.949 |
表 1 本文算法的检测结果
Table 1 Detection results of the proposed method
类别 | P | R | F1 | mAP0.5 | ||||
U形挂环 (US) | 0.962 | 0.867 | 0.912 | 0.938 | ||||
三角联板 (TYP) | 0.936 | 0.989 | 0.962 | 0.993 | ||||
调整板 (ADP) | 0.867 | 0.932 | 0.898 | 0.963 | ||||
耐张线夹 (TEC) | 0.785 | 0.836 | 0.811 | 0.828 | ||||
紧固螺栓 (CLB) | 0.855 | 0.967 | 0.908 | 0.968 | ||||
绝缘子 (In) | 0.998 | 1.000 | 0.998 | 0.996 | ||||
所有 (All) | 0.902 | 0.932 | 0.917 | 0.949 |
场景 | 原始图片 | TYP | In | ADP | TEC | CLB | US | |||||||
1 | ||||||||||||||
2 | ||||||||||||||
3 | ||||||||||||||
4 |
表 2 模型特征提取热力图可视化结果
Table 2 Heat map visualization results of model feature extraction
场景 | 原始图片 | TYP | In | ADP | TEC | CLB | US | |||||||
1 | ||||||||||||||
2 | ||||||||||||||
3 | ||||||||||||||
4 |
算法 | P/% | R/% | F1/% | mAP0.5/ % | GFLOPS/ G | Params/ M | FPS | |||||||
Faster R- CNN | 61.35 | 88.26 | 72.38 | 77.71 | 370.2 | 137.10 | 27.3 | |||||||
SSD | 82.34 | 76.01 | 79.05 | 74.45 | 62.7 | 26.30 | 119.8 | |||||||
YOLOv3 | 91.62 | 60.77 | 73.07 | 82.76 | 66.2 | 61.90 | 63.5 | |||||||
YOLOv5 | 92.13 | 87.24 | 89.62 | 89.90 | 115.9 | 47.00 | 60.3 | |||||||
YOLOv5 Swin+ BiFPN | 87.10 | 88.83 | 87.96 | 90.80 | 225.2 | 102.30 | 19.8 | |||||||
YOLOv5 Ghost backbone | 90.20 | 92.10 | 91.14 | 93.90 | 42.2 | 24.20 | 44.8 | |||||||
FCOS | 85.10 | 82.76 | 83.91 | 87.33 | 161.8 | 32.20 | 45.7 | |||||||
RetinaNet | 91.10 | 76.00 | 82.87 | 77.85 | 170.1 | 37.90 | 44.3 | |||||||
CenterNet | 98.80 | 63.26 | 77.13 | 87.18 | 70.2 | 32.70 | 88.4 | |||||||
TPH YOLOv5 | 88.11 | 89.60 | 88.85 | 92.50 | 270.3 | 112.90 | 16.2 | |||||||
YOLOX | 89.20 | 92.29 | 90.72 | 92.40 | 26.6 | 8.94 | 60.1 | |||||||
YOLOv7 | 87.60 | 90.60 | 89.07 | 92.72 | 106.4 | 37.60 | 51.3 | |||||||
本文 | 90.23 | 93.20 | 91.69 | 94.90 | 114.3 | 41.40 | 47.1 |
表 3 本文方法和其他先进算法的测试性能对比
Table 3 Test performance comparison between the proposed method and other advanced algorithms
算法 | P/% | R/% | F1/% | mAP0.5/ % | GFLOPS/ G | Params/ M | FPS | |||||||
Faster R- CNN | 61.35 | 88.26 | 72.38 | 77.71 | 370.2 | 137.10 | 27.3 | |||||||
SSD | 82.34 | 76.01 | 79.05 | 74.45 | 62.7 | 26.30 | 119.8 | |||||||
YOLOv3 | 91.62 | 60.77 | 73.07 | 82.76 | 66.2 | 61.90 | 63.5 | |||||||
YOLOv5 | 92.13 | 87.24 | 89.62 | 89.90 | 115.9 | 47.00 | 60.3 | |||||||
YOLOv5 Swin+ BiFPN | 87.10 | 88.83 | 87.96 | 90.80 | 225.2 | 102.30 | 19.8 | |||||||
YOLOv5 Ghost backbone | 90.20 | 92.10 | 91.14 | 93.90 | 42.2 | 24.20 | 44.8 | |||||||
FCOS | 85.10 | 82.76 | 83.91 | 87.33 | 161.8 | 32.20 | 45.7 | |||||||
RetinaNet | 91.10 | 76.00 | 82.87 | 77.85 | 170.1 | 37.90 | 44.3 | |||||||
CenterNet | 98.80 | 63.26 | 77.13 | 87.18 | 70.2 | 32.70 | 88.4 | |||||||
TPH YOLOv5 | 88.11 | 89.60 | 88.85 | 92.50 | 270.3 | 112.90 | 16.2 | |||||||
YOLOX | 89.20 | 92.29 | 90.72 | 92.40 | 26.6 | 8.94 | 60.1 | |||||||
YOLOv7 | 87.60 | 90.60 | 89.07 | 92.72 | 106.4 | 37.60 | 51.3 | |||||||
本文 | 90.23 | 93.20 | 91.69 | 94.90 | 114.3 | 41.40 | 47.1 |
算法 | 检测结果 | |||||
场景1 | 场景2 | 场景3 | ||||
Faster R-CNN | ||||||
YOLOv3 | ||||||
YOLOv5 Swin | ||||||
FOS | ||||||
CenterNet | ||||||
YOLOv7 | ||||||
SSD | ||||||
YOLOv5 | ||||||
YOLOv5 Ghost | ||||||
RetinaNet | ||||||
THP YOLOv5 | ||||||
本文 |
表 4 不同算法检测结果比较
Table 4 Comparison of different algorithm results
算法 | 检测结果 | |||||
场景1 | 场景2 | 场景3 | ||||
Faster R-CNN | ||||||
YOLOv3 | ||||||
YOLOv5 Swin | ||||||
FOS | ||||||
CenterNet | ||||||
YOLOv7 | ||||||
SSD | ||||||
YOLOv5 | ||||||
YOLOv5 Ghost | ||||||
RetinaNet | ||||||
THP YOLOv5 | ||||||
本文 |
锈蚀 检测 场景 | 原始图像 | 锈蚀故障检测结果 | 本文方法热力图识别结果 | |||||
本文方法 | 基线方法 | |||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
4 | ||||||||
5 |
表 5 本文方法和基线方法在不同场景下锈蚀故障检测结果对比
Table 5 Comparison of rust detection results between the proposed method and the baseline method in different scenarios
锈蚀 检测 场景 | 原始图像 | 锈蚀故障检测结果 | 本文方法热力图识别结果 | |||||
本文方法 | 基线方法 | |||||||
1 | ||||||||
2 | ||||||||
3 | ||||||||
4 | ||||||||
5 |
方法 | P | R | F1 | mAP0.5 | ||||
YOLOv7(Baseline) | 0.876 | 0.906 | 0.891 | 0.927 | ||||
ASPP | 0.896 | 0.902 | 0.909 | 0.921 | ||||
PCSA | 0.891 | 0.935 | 0.912 | 0.945 | ||||
Swin | 0.914 | 0.917 | 0.915 | 0.936 | ||||
PCSA+ASPP | 0.911 | 0.909 | 0.910 | 0.947 | ||||
Swin+PCSA | 0.908 | 0.912 | 0.912 | 0.941 | ||||
本文 | 0.902 | 0.932 | 0.917 | 0.949 |
表 6 消融实验对比结果
Table 6 Comparative results of ablation experiments
方法 | P | R | F1 | mAP0.5 | ||||
YOLOv7(Baseline) | 0.876 | 0.906 | 0.891 | 0.927 | ||||
ASPP | 0.896 | 0.902 | 0.909 | 0.921 | ||||
PCSA | 0.891 | 0.935 | 0.912 | 0.945 | ||||
Swin | 0.914 | 0.917 | 0.915 | 0.936 | ||||
PCSA+ASPP | 0.911 | 0.909 | 0.910 | 0.947 | ||||
Swin+PCSA | 0.908 | 0.912 | 0.912 | 0.941 | ||||
本文 | 0.902 | 0.932 | 0.917 | 0.949 |
1 | 刘传洋, 吴一全. 基于深度学习的输电线路视觉检测方法研究进展[J]. 中国电机工程学报, 2023, 43 (19): 7423- 7446. |
LIU Chuanyang, WU Yiquan. Research progress of vision detection methods based on deep learning for transmission lines[J]. Proceedings of the CSEE, 2023, 43 (19): 7423- 7446. | |
2 | 刘开培, 李博强, 秦亮, 等. 深度学习目标检测算法在架空输电线路绝缘子缺陷检测中的应用研究综述[J]. 高电压技术, 2023, 49 (9): 3584- 3595. |
LIU Kaipei, LI Boqiang, QIN Liang, et al. Review of application research of deep learning object detection algorithms in insulator defect detection of overhead transmission lines[J]. High Voltage Engineering, 2023, 49 (9): 3584- 3595. | |
3 | 姜岚, 程若恒, 唐波, 等. 基于图像边缘识别的输电线路拉线塔拉线张力测试方法[J]. 高电压技术, 2022, 48 (11): 4469- 4477. |
JIANG Lan, CHENG Ruoheng, TANG Bo, et al. Tension test method for guy cables of transmission line guyed tower based on image edge recognition[J]. High Voltage Engineering, 2022, 48 (11): 4469- 4477. | |
4 | 张烨, 高玉菡, 黄新波, 等. 基于Fine Mask RCNN的110~220kV输电铁塔涉鸟故障识别与评估[J]. 电网技术, 2022, 46 (6): 2132- 2144. |
ZHANG Ye, GAO Yuhan, HUANG Xinbo, et al. Fault identification and evaluation of tower wading in 110-220kV transmission line with fine mask RCNN[J]. Power System Technology, 2022, 46 (6): 2132- 2144. | |
5 |
RANI S, GHAI D, KUMAR S. Object detection and recognition using contour based edge detection and fast R-CNN[J]. Multimedia Tools and Applications, 2022, 81 (29): 42183- 42207.
DOI |
6 |
XU X Y, ZHAO M, SHI P X, et al. Crack detection and comparison study based on faster R-CNN and mask R-CNN[J]. Sensors, 2022, 22 (3): 1215.
DOI |
7 | 戚银城, 武学良, 赵振兵, 等. 嵌入双注意力机制的Faster R-CNN航拍输电线路螺栓缺陷检测[J]. 中国图象图形学报, 2021, 26 (11): 2594- 2604. |
QI Yincheng, WU Xueliang, ZHAO Zhenbing, et al. Bolt defect detection for aerial transmission lines using Faster R-CNN with an embedded dual attention mechanism[J]. Journal of Image and Graphics, 2021, 26 (11): 2594- 2604. | |
8 | 白洁音, 赵瑞, 谷丰强, 等. 多目标检测和故障识别图像处理方法[J]. 高电压技术, 2019, 45 (11): 3504- 3511. |
BAI Jieyin, ZHAO Rui, GU Fengqiang, et al. Multi-target detection and fault recognition image processing method[J]. High Voltage Engineering, 2019, 45 (11): 3504- 3511. | |
9 |
TRIPATHY S, SATPATHY M. SSD internal cache management policies: a survey[J]. Journal of Systems Architecture, 2022, 122, 102334.
DOI |
10 |
DEWI C, CHEN R C, JIANG X Y, et al. Deep convolutional neural network for enhancing traffic sign recognition developed on YOLO v4[J]. Multimedia Tools and Applications, 2022, 81 (26): 37821- 37845.
DOI |
11 |
WANG Q F, CHENG M, HUANG S, et al. A deep learning approach incorporating YOLO v5 and attention mechanisms for field real-time detection of the invasive weed Solanum rostratum dunal seedlings[J]. Computers and Electronics in Agriculture, 2022, 199, 107194.
DOI |
12 |
JIANG K L, XIE T Y, YAN R, et al. An attention mechanism-improved YOLOv7 object detection algorithm for hemp duck count estimation[J]. Agriculture, 2022, 12 (10): 1659.
DOI |
13 | 谢静, 杜耀文, 刘志坚, 等. 基于轻量化改进型YOLOv5s的可见光绝缘子缺陷检测算法[J]. 电网技术, 2023, 47 (12): 5273- 5283. |
XIE Jing, DU Yaowen, LIU Zhijian, et al. Defect detection algorithm based on lightweight and improved YOLOv5s for visible light insulators[J]. Power System Technology, 2023, 47 (12): 5273- 5283. | |
14 | 汝承印, 张仕海, 张子淼, 等. 基于轻量级MobileNet-SSD和MobileNetV2-DeeplabV3+的绝缘子故障识别方法[J]. 高电压技术, 2022, 48 (9): 3670- 3679. |
RU Chengyin, ZHANG Shihai, ZHANG Zimiao, et al. Fault identification method for high voltage power grid insulator based on lightweight MobileNet-SSD and MobileNetV2-DeeplabV3+ network[J]. High Voltage Engineering, 2022, 48 (9): 3670- 3679. | |
15 |
LIANG Y H, LIN Y, LU Q. Forecasting gold price using a novel hybrid model with ICEEMDAN and LSTM-CNN-CBAM[J]. Expert Systems with Applications, 2022, 206, 117847.
DOI |
16 |
HUANG J, REN L F, ZHOU X K, et al. An improved neural network based on SENet for sleep stage classification[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26 (10): 4948- 4956.
DOI |
17 | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA. IEEE, 2021: 13708–13717. |
18 |
ZHAO Y L, JU Z J, SUN T A, et al. TGC-YOLOv5: an enhanced YOLOv5 drone detection model based on transformer, GAM & CA attention mechanism[J]. Drones, 2023, 7 (7): 446.
DOI |
19 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA. ACM, 2017: 6000–6010. |
20 |
JIAO M, WANG D Q, QIU J L. A GRU-RNN based momentum optimized algorithm for SOC estimation[J]. Journal of Power Sources, 2020, 459, 228051.
DOI |
21 |
ZHA W S, LIU Y P, WAN Y J, et al. Forecasting monthly gas field production based on the CNN-LSTM model[J]. Energy, 2022, 260, 124889.
DOI |
22 |
SONG Z W, HUANG X B, JI C, et al. Double-attention YOLO: vision transformer model based on image processing technology in complex environment of transmission line connection fittings and rust detection[J]. Machines, 2022, 10 (11): 1002.
DOI |
23 |
GONG H, MU T K, LI Q X, et al. Swin-transformer-enabled YOLOv5 with attention mechanism for small object detection on satellite images[J]. Remote Sensing, 2022, 14 (12): 2861.
DOI |
24 | 宋智伟, 黄新波, 纪超, 等. 基于Flexible YOLOv7的输电线路绝缘子缺陷检测和故障预警方法[J/OL]. 高电压技术: 1–16[2023-08-01].https://doi.org/10.13336/j.1003-6520.hve.20221693. |
SONG Zhiwei, Huang Xinbo, Ji Chao et al. Transmission line insulator defect detection and fault warning method based on Flexible YOLOv7[J/OL]. High Voltage Technology : 1–16 [2023-08-01].https://doi.org/10.13336/j.1003-6520.hve.20221693. | |
25 |
LIU R R, TAO F, LIU X T, et al. RAANet: a residual ASPP with attention framework for semantic segmentation of high-resolution remote sensing images[J]. Remote Sensing, 2022, 14 (13): 3109.
DOI |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||