中国电力 ›› 2020, Vol. 53 ›› Issue (6): 48-55.DOI: 10.11930/j.issn.1004-9649.201910012

• 人工智能在电力系统的应用 • 上一篇    下一篇

基于互补集合经验模态分解和长短期记忆神经网络的短期电力负荷预测

赵会茹, 赵一航, 郭森   

  1. 华北电力大学 经济与管理学院,北京 102206
  • 收稿日期:2019-10-10 修回日期:2020-02-17 发布日期:2020-06-05
  • 作者简介:赵会茹(1963-),女,教授,博士生导师,从事电力市场理论及应用技术研究,E-mail:huiruzhao@163.com;赵一航(1997-),男,硕士研究生,通信作者,从事电力市场理论及应用技术研究,E-mail:1182206105@ncepu.edu.cn;郭森(1987-),男,副教授,从事电力市场理论及应用技术研究,E-mail:guosen324@163.com
  • 基金资助:
    国家自然科学基金资助项目(71973043);国家电网有限公司总部科技项目(售电侧放开模式下零售电价价格政策研究及应用,SGNY0000CSJS1800046)

Short-Term Load Forecasting Based on Complementary Ensemble Empirical Mode Decomposition and Long Short-Term Memory

ZHAO Huiru, ZHAO Yihang, GUO Sen   

  1. School of Economics and Management, North China Electric Power University, Beijing 102206, China
  • Received:2019-10-10 Revised:2020-02-17 Published:2020-06-05
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.71973043), the Science and Technology Project of State Grid Corporation of China (Policy Research and Application on Electricity Retail Price under the Model of Electricity Retail Side Degradation, No.SGNY0000CSJS1800046)

摘要: 随着电力行业的不断发展,负荷预测的重要性也不断彰显,作为负荷预测的重要组成部分,短期负荷预测对于电力系统的调度运行、市场交易都有着重要的意义,精确的负荷预测有助于提高发电设备的利用率和经济调度的有效性。由于影响负荷数据的随机因素太多且具有较强非线性的特点,提出一种基于互补集合经验模态分解和长短期记忆神经网络的短期电力负荷预测方法。通过对某市负荷数据进行仿真,将仿真结果与其他传统预测方法结果相对比,最终证明长短期记忆神经网络模型的误差更低,具有较高的预测精度。同时将互补集合经验模态分解下的长短期记忆神经网络方法与其他分解方法下的长短期记忆神经网络模型预测结果进行对比,验证互补集合经验模态分解方法对提升预测精度的有效性。

关键词: 短期电力负荷预测, 长短期记忆网络, 互补集合经验模态分解, 深度学习

Abstract: With the continuous development of power industry, the importance of load forecasting is becoming more and more obvious. As an important part of load forecasting, short-term load forecasting is of great significance to the dispatching and operation of power system and market transactions. Accurate load forecasting is helpful to improve the utilization rate of power generation equipment and the effectiveness of economic dispatching. Because load data are affected by many random factors and have strong nonlinear characteristics, a short-term power load forecasting method is proposed based on complementary ensemble empirical mode decomposition and long short-term memory. A simulation is made of a city’s power load data using the proposed method, and the simulation results are compared with those of other traditional forecasting methods. It is proved that the long short-term memory model has lower error and higher prediction accuracy. At the same time, the prediction results of complementary ensemble empirical mode decomposition and long short-term memory are compared with those of long short-term memory model under other decomposition methods, which has verified that the complementary ensemble empirical mode decomposition method is effective in improving the prediction accuracy.

Key words: short-term load forecasting, long short-term memory, complementary ensemble empirical mode decomposition, deep learning