[1] 康重庆, 夏清, 刘梅. 电力系统负荷预测 [M]. 北京: 中国电力出版社, 2017. [2] 张伏生, 汪鸿, 韩悌, 等. 基于偏最小二乘回归分析的短期负荷预测[J]. 电网技术, 2003, 27(3): 36-40 ZHANG Fusheng, WANG Hong, HAN Ti, et al. Short-term load forecasting based on partial least-squares regression[J]. Power System Technology, 2003, 27(3): 36-40 [3] 杨正瓴, 张广涛, 林孔元. 时间序列法短期负荷预测准确度上限估计[J]. 电力系统及其自动化学报, 2004, 16(2): 36-39 YANG Zhengling, ZHANG Guangtao, LIN Kongyuan. Upper limit estimating of short term load forecasting precision by time series analysis[J]. Proceedings of the CSU-EPSA, 2004, 16(2): 36-39 [4] 苏振宇, 龙勇, 赵丽艳. 基于regARIMA模型的月度负荷预测效果研究[J]. 中国电力, 2018, 51(5): 166-171 SU Zhenyu, LONG Yong, ZHAO Liyan. Study on the monthly power load forecasting performance based on regARIMA model[J]. Electric Power, 2018, 51(5): 166-171 [5] SATISH B, SWARUP K S, SRINIVAS S, et al. Effect of temperature on short term load forecasting using an integrated ANN[J]. Electric Power Systems Research, 2004, 72(1): 95-101. [6] 唐玮, 钟士元, 舒娇, 等. 基于GRA-LSSVM的配电网空间负荷预测方法研究[J]. 电力系统保护与控制, 2018, 46(24): 76-82 TANG Wei, ZHONG Shiyuan, SHU Jiao, et al. Research on spatial load forecasting of distribution network based on GRA-LSSVM method[J]. Power System Protection and Control, 2018, 46(24): 76-82 [7] 霍娟, 孙晓伟, 张明杰. 电力负荷预测算法比较-随机森林与支持向量机[J]. 电力系统及其自动化学报, 2019, 31(7): 129-134 HUO Juan, SUN Xiaowei, ZHANG Mingjie. Comparison between power load forecasting algorithms based on random forest and support vector machine[J]. Proceedings of the CSU-EPSA, 2019, 31(7): 129-134 [8] 胡杨, 常鲜戎. 基于改进EMD-PSVM的短期负荷预测[J]. 陕西电力, 2016, 44(3): 29-33 HU Yang, CHANG Xianrong. Short-term load forecasting based on improved EMD-PSVM[J]. Shaanxi Electric Power, 2016, 44(3): 29-33 [9] 刘达, 孙堃, 黄晗. 基于EEMD和随机森林的月度负荷预测[J]. 智慧电力, 2018, 46(6): 12-18 LIU Da, SUN Kun, HUANG Han. Monthly load forecasting based on EEMD and random forest[J]. Smart Power, 2018, 46(6): 12-18 [10] 张妍, 韩璞. 基于CEEMD-LSSVM的风电场短期风速预测[J]. 计算机仿真, 2017, 34(8): 408-411, 444 ZHANG Yan, HAN Pu. Short-term prediction of wind speed for wind farm based on CEEMD-LSSVM model[J]. Computer Simulation, 2017, 34(8): 408-411, 444 [11] 吴润泽, 包正睿, 宋雪莹, 等. 基于深度学习的电网短期负荷预测方法研究[J]. 现代电力, 2018, 35(2): 43-48 WU Runze, BAO Zhengrui, SONG Xueying, et al. Research on short-term load forecasting method of power grid based on deep learning[J]. Modern Electric Power, 2018, 35(2): 43-48 [12] 杨智宇, 刘俊勇, 刘友波, 等. 基于自适应深度信念网络的变电站负荷预测[J]. 中国电机工程学报, 2019, 39(14): 4049-4061 YANG Zhiyu, LIU Junyong, LIU Youbo, et al. Transformer load forecasting based on adaptive deep belief network[J]. Proceedings of the CSEE, 2019, 39(14): 4049-4061 [13] 李若晨, 朱帆, 朱永利, 等. 结合受限玻尔兹曼机的递归神经网络电力系统短期负荷预测[J]. 电力系统保护与控制, 2018, 46(17): 83-88 LI Ruochen, ZHU Fan, ZHU Yongli, et al. Short-term power load forecasting using recurrent neural network with restricted Boltzmann machine[J]. Power System Protection and Control, 2018, 46(17): 83-88 [14] 赵芝璞, 高超, 沈艳霞, 等. 基于关联模糊神经网络和改进型蜂群算法的负荷预测方法[J]. 中国电力, 2018, 51(2): 54-60 ZHAO Zhipu, GAO Chao, SHEN Yanxia, et al. A method for load forecasting based on correlated fuzzy neural network and improved artificial bee colony algorithm[J]. Electric Power, 2018, 51(2): 54-60 [15] 陈亮, 王震, 王刚. 深度学习框架下LSTM网络在短期电力负荷预测中的应用[J]. 电力信息与通信技术, 2017, 15(5): 8-11 CHEN Liang, WANG Zhen, WANG Gang. Application of LSTM networks in short-term power load forecasting under the deep learning framework[J]. Electric Power Information and Communication Technology, 2017, 15(5): 8-11 [16] 杨斌, 杨世海, 曹晓冬, 等. 基于EMD-QRF的用户负荷概率密度预测[J]. 电力系统保护与控制, 2019, 47(16): 1-7 YANG Bin, YANG Shihai, CAO Xiaodong, et al. Short-term consumer load probability density forecasting based on EMD-QRF[J]. Power System Protection and Control, 2019, 47(16): 1-7 [17] WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. [18] YEH J R, SHIEH J S, HUANG N E. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2(2): 135-156. [19] FAWAZ H I, FORETIER G, WEBER J, et al. Deep learning for time series classification: a review[J]. Data Mining and Knowledge Discovery, 2019, 33(4): 917-963. [20] 刘建华, 李锦程, 杨龙月, 等. 基于EMD-SLSTM的家庭短期负荷预测[J]. 电力系统保护与控制, 2019, 47(6): 40-47 LIU Jianhua, LI Jincheng, YANG Longyue, et al. Short-term household load forecasting based on EMD-SLSTM[J]. Power System Protection and Control, 2019, 47(6): 40-47 [21] 谢明磊. 基于LSTM网络的住宅负荷短期预测[J]. 广东电力, 2019, 32(6): 108-114 XIE Minglei. Short-term residence load forecast based on LSTM network[J]. Guangdong Electric Power, 2019, 32(6): 108-114 [22] BOTTOU L. Online learning and stochastic approximations[J]. On-line Learning in Neural Networks, 1998, 17(9): 9-42. [23] YUAN X, HE P, ZHU Q, et al. Adversarial examples: attacks and defenses for deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(9): 2805-2824. [24] LATHA M, KAVITHA G. Detection of Schizophrenia in brain MR images based on segmented ventricle region and deep belief networks[J]. Neural Computing and Applications, 2019, 31(9): 5195-5206. |