[1] 张伏生, 汪鸿, 韩悌, 等. 基于偏最小二乘回归分析的短期负荷预测[J]. 电网技术, 2003, 27(3): 36-40 ZHANG Fusheng, WANG Hong, HAN Ti, et al. Short-term load forecasting based on partial least-squares regression[J]. Power System Technology, 2003, 27(3): 36-40 [2] 苏振宇, 龙勇, 赵丽艳. 基于regARIMA模型的月度负荷预测效果研究[J]. 中国电力, 2018, 51(5): 166-171 SU Zhenyu, LONG Yong, ZHAO Liyan. Study on the monthly power load forecasting performance based on regARIMA model[J]. Electric Power, 2018, 51(5): 166-171 [3] 连楷敏, 陈冬沣, 肖建华. 基于气象信息因素修正的灰色短期负荷预测研究[J]. 自动化应用, 2016(12): 148-149, 156 LIAN Kaimin, CHEN Dongfeng, XIAO Jianhua. Grey short-term load forecasting based on meteorological information modification[J]. Automation application, 2016(12): 148-149, 156 [4] 李东东, 覃子珊, 林顺富, 等. 基于混沌时间序列法的微网短期负荷预测[J]. 电力系统及其自动化学报, 2015, 27(5): 14-18 LI Dongdong, QIN Zishan, LIN Shunfu, et al. Short-term load forecasting for microgrid based on method of chaotic time series[J]. Proceedings of the CSU-EPSA, 2015, 27(5): 14-18 [5] 吴潇雨, 和敬涵, 张沛, 等. 基于灰色投影改进随机森林算法的电力系统短期负荷预测[J]. 电力系统自动化, 2015, 39(12): 50-55 WU Xiaoyu, HE Jinghan, ZHANG Pei, et al. Power system short-term load forecasting based on improved random forest with grey relation projection[J]. Automation of Electric Power Systems, 2015, 39(12): 50-55 [6] 牛东晓, 马天男, 王海潮, 等. 基于KPCA和NSGAⅡ优化CNN参数的电动汽车充电站短期负荷预测[J]. 电力建设, 2017, 38(3): 85-92 NIU Dongxiao, MA Tiannan, WANG Haichao, et al. Short-term load forecasting of electric vehicle charging station based on KPCA and CNN parameters optimized by NSGAⅡ[J]. Electric Power Construction, 2017, 38(3): 85-92 [7] 朱抗, 杨洪明, 孟科. 基于极限学习机的短期风力发电预测[J]. 电力科学与技术学报, 2019, 34(2): 106-111 ZHU Kang, YANG Hongming, MENG Ke. Short-term wind power forecast using extreme learning machine[J]. Journal of Electric Power Science And Technology, 2019, 34(2): 106-111 [8] 李若晨, 朱帆, 朱永利, 等. 结合受限玻尔兹曼机的递归神经网络电力系统短期负荷预测[J]. 电力系统保护与控制, 2018, 46(17): 83-88 LI Ruochen, ZHU Fan, ZHU Yongli, et al. Short-term power load forecasting using recurrent neural network with restricted Boltzmann machine[J]. Power System Protection and Control, 2018, 46(17): 83-88 [9] 唐玮, 钟士元, 舒娇, 等. 基于GRA-LSSVM的配电网空间负荷预测方法研究[J]. 电力系统保护与控制, 2018, 46(24): 76-82 TANG Wei, ZHONG Shiyuan, SHU Jiao, et al. Research on spatial load forecasting of distribution network based on GRA-LSSVM method[J]. Power System Protection and Control, 2018, 46(24): 76-82 [10] 唐宏, 冯平, 陈镜伯, 等. 萤火虫算法优化SVR参数在短期电力负荷预测中的应用[J]. 西华大学学报(自然科学版), 2017, 36(1): 35-38 TANG Hong, FENG Ping, CHEN Jingbo, et al. Application of firefly algorithm-based optimization of SVR parameters in short-term power load forecasting[J]. Journal of Xihua University (Natural Science Edition), 2017, 36(1): 35-38 [11] 伍庭波. 基于周期调整及萤火虫算法优化参数的智能短期负荷预测模型[D]. 兰州: 兰州大学, 2016. WU Tingbo. An intelligent model based on parameter optimized by firefly algorithm with circle adjustment for the short-term power load forecasting[D]. Lanzhou: Lanzhou University, 2016. [12] 雷绍兰, 古亮, 杨佳, 等. 重庆地区电力负荷特性及其影响因素分析[J]. 中国电力, 2014, 47(12): 61-65, 71 LEI Shaolan, GU Liang, YANG Jia, et al. Analysis of electric power load characteristics and its influencing factors in Chongqing region[J]. Electric Power, 2014, 47(12): 61-65, 71 [13] 石玉恒, 赵娜, 王凌, 等. 北京地区日最大电力负荷预测模型初探[J]. 中国电力, 2019, 52(8): 157-163 SHI Yuheng, ZHAO Na, WANG Ling, et al. Study on forecasting model of maximum daily power load in Beijing area[J]. Electric Power, 2019, 52(8): 157-163 [14] ZHOU Z H, WU J X, TANG W. Ensembling neural networks: many could be better than all[J]. Artificial Intelligence, 2002, 137(1/2): 239-263. [15] KRISHNANAND K N, GHOSE D. Detection of multiple source locations using a glowworm metaphor with applications to collective robotics[C]//Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005. Pasadena, CA, USA. IEEE, 2005: 84-91. [16] NELSON JAYAKUMAR D, VENKATESH P. Glowworm swarm optimization algorithm with topsis for solving multiple objective environmental economic dispatch problem[J]. Applied Soft Computing, 2014, 23: 375-386. [17] 王艳, 王秋萍, 王晓峰. 基于改进萤火虫算法求解旅行商问题[J]. 计算机系统应用, 2018, 27(8): 219-225 WANG Yan, WANG Qiuping, WANG Xiaofeng. Solving traveling salesman problem based on improved firefly algorithm[J]. Computer Systems & Applications, 2018, 27(8): 219-225 [18] 倪志伟, 张琛, 倪丽萍. 基于萤火虫群优化算法的选择性集成雾霾天气预测方法[J]. 模式识别与人工智能, 2016, 29(2): 143-153 NI Zhiwei, ZHANG Chen, NI Liping. Haze forecast method of selective ensemble based on glowworm swarm optimization algorithm[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(2): 143-153
|