[1] 王凌谊, 王志敏, 钱纹, 等. 适应供给侧结构性改革的中长期负荷预测拓展索洛模型研究[J]. 电力系统保护与控制, 2019, 47(18): 49-59 WANG Lingyi, WANG Zhimin, QIAN Wen, et al. Extended Solow regression model for mid/long-term load forecasting adapted to supply-side structural reform[J]. Power System Protection and Control, 2019, 47(18): 49-59 [2] 王德文, 孙志伟. 电力用户侧大数据分析与并行负荷预测[J]. 中国电机工程学报, 2015, 35(3): 527-537 WANG Dewen, SUN Zhiwei. Big data analysis and parallel load forecasting of electric power user side[J]. Proceedings of the CSEE, 2015, 35(3): 527-537 [3] 郭艳飞, 程林, 李洪涛, 等. 基于支持向量机和互联网信息修正的空间负荷预测方法[J]. 中国电力, 2019, 52(4): 80-88 GUO Yanfei, CHENG Lin, LI Hongtao, et al. Spatial load forecasting method based on support vector machine and internet information correction[J]. Electric Power, 2019, 52(4): 80-88 [4] 李知艺, 丁剑鹰, 吴迪, 等. 电力负荷区间预测的集成极限学习机方法[J]. 华北电力大学学报(自然科学版), 2014, 41(2): 78-88 LI Zhiyi, DING Jianying, WU Di, et al. An ensemble model of the extreme learning machine for load interval prediction[J]. Journal of North China Electric Power University (Natural Science Edition), 2014, 41(2): 78-88 [5] 张宇献, 郝双, 钱小毅. 基于误差分解和Bootstrap方法的风电功率区间预测[J]. 电网技术, 2019, 43(6): 1941-1947 ZHANG Yuxian, HAO Shuang, QIAN Xiaoyi. Interval prediction of wind power based on error decomposition and bootstrap method revoke[J]. Power System Technology, 2019, 43(6): 1941-1947 [6] GUAN C, LUH P B, MICHEL L D, et al. Hybrid Kalman filters for very short-term load forecasting and prediction interval estimation[J]. IEEE Transactions on Power Systems, 2013, 28(4): 3806-3817. [7] QUAN H, SRINIVASAN D, KHOSRAVI A. Uncertainty handling using neural network-based prediction intervals for electrical load forecasting[J]. Energy, 2014, 73: 916-925. [8] KHOSRAVI A, NAHAVANDI S, CREIGHTON D. Construction of optimal prediction intervals for load forecasting problems[J]. IEEE Transactions on Power Systems, 2010, 25(3): 1496-1503. [9] 何耀耀, 许启发, 杨善林, 等. 基于RBF神经网络分位数回归的电力负荷概率密度预测方法[J]. 中国电机工程学报, 2013, 33(1): 93-98 HE Yaoyao, XU Qifa, YANG Shanlin, et al. A power load probability density forecasting method based on RBF neural network quantile regression[J]. Proceedings of the CSEE, 2013, 33(1): 93-98 [10] 黄彦璐, 张震, 张喆, 等. 基于非侵入式负荷辨识和关联规则挖掘的用户柔性负荷区间预测[J]. 南方电网技术, 2019, 13(4): 60-66 HUANG Yanlu, ZHANG Zhen, ZHANG Zhe, et al. User-side flexible load interval prediction based on non-intrusive load identification and association rule mining[J]. Southern Power System Technology, 2019, 13(4): 60-66 [11] CHARYTONIUK W, NIEBRZYDOWSKI J. Confidence interval construction for load forecast[J]. Electric Power Systems Research, 1998, 48(2): 97-103. [12] KHOSRAVI A, NAHAVANDI S, CREIGHTON D, et al. Lower upper bound estimation method for construction of neural network-based prediction intervals[J]. IEEE Transactions on Neural Networks, 2011, 22(3): 337-346. [13] 姜鹏飞, 蔡之华. 基于遗传算法和梯度下降的RBF神经网络组合训练方法[J]. 计算机应用, 2007(2): 366-368, 372 JIANG Pengfei, CAI Zhihua. Combined algorithms for training RBF neural networks based on genetic algorithms and gradient descent[J]. Journal of Computer Applications, 2007(2): 366-368, 372 [14] 石红伟, 杨明红. 基于ELM的跨越前馈神经网络及其应用研究[J]. 现代电子技术, 2013, 36(15): 108-111 SHI Hongwei, YANG Minghong. Span feedforward neural network based on ELM and its application[J]. Modern Electronics Technique, 2013, 36(15): 108-111 [15] WANG J Z, DU P, LU H Y, et al. An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting[J]. Applied Soft Computing, 2018, 72: 321-337. [16] WANG J Z, YANG W D, DU P, et al. Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system[J]. Energy, 2018, 148: 59-78. [17] ZHANG J L, WEI Y M, LI D Z, et al. Short term electricity load forecasting using a hybrid model[J]. Energy, 2018, 158: 774-781. [18] MALLAT S G. A theory for multi-resolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693. [19] LI B W, ZHANG J, HE Y, et al. Short-term load-forecasting method based on wavelet decomposition with second-order gray neural network model combined with ADF test[J]. IEEE Access, 2017, 5: 16324-16331. [20] LIU H, CHEN C, TIAN H Q, et al. A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks[J]. Renewable Energy, 2012, 48: 545-556. [21] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. [22] 谢宏, 陈志业, 牛东晓, 等. 基于小波分解与气象因素影响的电力系统日负荷预测模型研究[J]. 中国电机工程学报, 2001(5): 5-10 XIE Hong, CHEN Zhiye, NIU Dongxiao, et al. The research of daily load forecasting model based on wavelet decomposing and climatic influence[J]. Proceedings of the CSEE, 2001(5): 5-10 [23] 汤庆峰, 刘念, 张建华, 等. 基于EMD-KELM-EKF与参数优选的用户侧微电网短期负荷预测方法[J]. 电网技术, 2014, 38(10): 2691-2699 TANG Qingfeng, LIU Nian, ZHANG Jianhua, et al. A short-term load forecasting method for micro-grid based on EMD-KELM-EKF and parameter optimization[J]. Power System Technology, 2014, 38(10): 2691-2699 [24] HU X Y, PENG S L, HWANG W L. EMD revisited: a new understanding of the envelope and resolving the mode-mixing problem in AM-FM signals[J]. IEEE Transactions on Signal Processing, 2012, 60(3): 1075-1086. [25] TANG B P, DONG S J, SONG T. Method for eliminating mode mixing of empirical mode decomposition based on the revised blind source separation[J]. Signal Processing, 2012, 92(1): 248-258. [26] WANG T, ZHANG M C, YU Q H, et al. Comparing the applications of EMD and EEMD on time-frequency analysis of seismic signal[J]. Journal of Applied Geophysics, 2012, 83: 29-34. [27] WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. [28] RICHMAN J S, MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology Heart and Circulatory Physiology, 2000, 278(6): H2039-H2049. [29] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501. [30] HUANG G B. An insight into extreme learning machines: random neurons, random features and kernels[J]. Cognitive Computation, 2014, 6(3): 376-390. [31] DEL VALLE Y, VENAYAGAMOORTHY G K, MOHAGHEGHI S, et al. Particle swarm optimization: basic concepts, variants and applications in power systems[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(2): 171-195.
|