中国电力 ›› 2025, Vol. 58 ›› Issue (10): 195-205.DOI: 10.11930/j.issn.1004-9649.202412004

• 新型电网 • 上一篇    下一篇

结合极端梯度提升决策树与改进Informer的短期电力负荷预测方法

俞胜1(), 孙可2, 蔡华1(), 刘剑2, 顾益磊2, 姜昀芃3   

  1. 1. 国网电力科学研究院有限公司,江苏 南京 211106
    2. 国网浙江省电力有限公司,浙江 杭州 310007
    3. 国网浙江省电力有限公司杭州供电公司,浙江 杭州 311201
  • 收稿日期:2024-12-02 发布日期:2025-10-23 出版日期:2025-10-28
  • 作者简介:
    俞胜(1974),男,硕士,高级工程师,从事用电信息采集、电力负荷管理研究,E-mail:yusheng@sgepri.sgcc.com.cn
    蔡华(1981),男,通信作者,硕士,高级工程师,从事用电信息采集、电力负荷管理研究,E-mail:caihua@sgepri.sgcc.com.cn
  • 基金资助:
    国家电网有限公司科技项目(提升电力系统灵活性的用户侧资源聚合调控及分布式平衡交易机制研究,5211HZ23001D)。

A Short-term Power Load Forecasting Method Combining Extreme Gradient Boosting Decision Tree with an Improved Informer

YU Sheng1(), SUN Ke2, CAI Hua1(), LIU Jian2, GU Yilei2, JIANG Yunpeng3   

  1. 1. State Grid Electric Power Research Institute Company Limited, Nanjing 211106, China
    2. State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310007, China
    3. Hangzhou Power Supply Company, State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 311201, China
  • Received:2024-12-02 Online:2025-10-23 Published:2025-10-28
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (Research on User side Resource Aggregation Regulation and Distributed Balance Trading Mechanism to Enhance the Flexibility of Power System, No.5211HZ23001D).

摘要:

准确筛选影响短期电力负荷预测的特征因素是提高预测准确性的有效手段。针对多维数据集中非关键特征易引起预测模型拟合能力不佳,从而降低模型准确性的问题,提出了一种基于极端梯度提升(eXtreme gradient boosting,XGBoost)决策树与改进Informer模型相结合的短期电力负荷预测方法。首先,为了从多维历史负荷数据中评估特征因素重要性,采用XGBoost决策树覆盖率作为评估特征重要性的指标,准确筛选参与模型训练的特征因素。然后,构建了改进Informer短期负荷预测模型,通过对位置编码开展优化设计,将筛选出的关键特征联合不同时间尺度的位置标记信息作为编码器的输入向量。再次,设计消融实验对不同时间尺度下的模型收敛速度与预测精度开展对比分析。最后,开展算例分析进行验证,结果表明,与其他模型相比,XGB-Informer模型在短期电力负荷预测精度和收敛速度上均表现出明显优势,验证了所提方法的有效性和优越性。

关键词: 短期电力负荷预测, XGBoost决策树, 改进Informer, 特征筛选, 重要性排序

Abstract:

Accurately identifying the key feature factors that influence short-term power load forecasting is an effective means for enhancing forecast accuracy. To address the issue in multidimensional datasets where non-critical features can easily lead to poor fitting capability of prediction models, consequently reducing model accuracy, this paper proposes a short-term power load forecasting method that combines the eXtreme Gradient Boosting (XGBoost) decision tree with an improved Informer model. Firstly, to evaluate the importance of feature factors from multi-dimensional historical load data, the coverage metric of XGBoost decision tree is adopted as an indicator to assess feature importance, thereby enabling accurate screening of the feature factors participating in model training. Subsequently, an improved Informer short-term load forecasting model is constructed. By optimizing the positional encoding design, the selected key features are combined with positional markers of different time scales to form input vectors for the encoder. Finally, ablation experiments are designed to conduct a comparative analysis of model convergence speed and prediction accuracy across different time scales. Experimental results indicate that, compared to other models, the XGB-Informer model demonstrates significant advantages in both prediction accuracy and convergence speed, verifying the effectiveness and superiority of the proposed method.

Key words: short-term power load forecasting, XGBoost decision tree, improved informer, feature selection, importance ranking


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?