中国电力 ›› 2016, Vol. 49 ›› Issue (10): 127-131.DOI: 10.11930/j.issn.1004-9649.2016.10.127.05

• 节能与环保 • 上一篇    下一篇

基于BP神经网络的SCR蜂窝状催化剂脱硝性能预测

杨碧源,赵金笑,魏宏鸽,王艳鹏,朱跃   

  1. 华电电力科学研究院,浙江 杭州 310030
  • 收稿日期:2016-03-21 出版日期:2016-10-10 发布日期:2016-11-07
  • 作者简介:杨碧源(1987—),男,河南禹州人,工程师,主要从事脱硝催化剂方面的研究。E-mail: ybiyuan@126.com

Performance Forecasting for SCR Honeycomb Catalyst Based on BP Neural Network

YANG Biyuan, ZHAO Jinxiao, WEI Hongge, WANG Yanpeng, ZHU Yue   

  1. Huadian Electric Power Research Institute, Hangzhou 310030, China
  • Received:2016-03-21 Online:2016-10-10 Published:2016-11-07

摘要: 选择性催化还原(SCR)法是目前烟气脱硝应用最广泛的技术之一,其脱硝效率与催化剂有紧密联系。在自制性能测试试验台上,以某商用蜂窝状催化剂为研究对象,选取空速、温度、氧气含量、氨氮摩尔比、NO浓度5组参数进行脱硝性能测试,分析其对脱硝效率的影响。在实验数据的基础上,应用BP神经网络建立了预测模型,并与实验数据进行了对比分析。结果表明,当BP神经网络拓扑结构为5×7×1时,训练结果较好,利用其进行脱硝性能预测时,绝对误差绝对值的平均值为8%,相对误差绝对值的平均值为11%,证明BP神经网络拟合效果较好。

关键词: 燃煤电厂, 烟气脱硝, 蜂窝状催化剂, SCR, BP神经网络, 预测模型

Abstract: Currently, the selective catalytic reduction (SCR) is one of the most widely used technologies for flue gas denitification. However, its De-NOx efficiency relies heavily on the catalyst. In this paper, take the example of a commercial SCR honeycomb monoliths, five sets of parameters, i.e., GHSV, temperature, oxygen content, NH3/NO ratio and initial NO concentration, are chosen in the De-NOx performance testing on a homegrown testing bed to study its effect on the De-NOx efficiency. Based on the testing data, the prediction model of De-NOx efficiency of SCR honeycomb monoliths is established by applying BP neural network. The results show that the convergence results are satisfactory when the topology structure is formulated as 5×7×1; When it is used in the performance forecasting, the absolute error is about 8% by average while the average relative error is 11% respectively, which proves the good fitting effect of BP neural network.

Key words: coal-fired power plant, flue gas denitrification, honeycomb catalysts, SCR, BP neural network, prediction model

中图分类号: