[1] 刘勇. 碱基吸收剂喷射脱除燃煤烟气中SO3的实验研究[D]. 杭州: 浙江大学, 2018. LIU Yong. Experimental study on the removal of SO3 from coal-fired flue gas by alkaline sorbent injection[D]. Hangzhou: Zhejiang University, 2018. [2] 胡鹏博, 翁麒宇, 李端乐, 等. 模拟烟气中气态痕量元素污染物发生方法的研究现状[J]. 工程科学学报, 2020, 42(11): 1411–1421 HU Pengbo, WENG Qiyu, LI Duanle, et al. Research status of methods for generating gaseous trace element pollutants in simulated flue gas[J]. Chinese Journal of Engineering, 2020, 42(11): 1411–1421 [3] 李林欣, 李乾军, 张雯娣, 等. 燃煤烟气中SO3的产生及其治理措施[J]. 化工装备技术, 2018, 39(1): 1–6 LI Linxin, LI Qianjun, ZHANG Wendi, et al. The production and control of SO3 in coal-fired flue gas[J]. Chemical Equipment Technology, 2018, 39(1): 1–6 [4] 罗汉成, 潘卫国, 丁红蕾, 等. 燃煤锅炉烟气中SO3的产生机理及其控制技术[J]. 锅炉技术, 2015, 46(6): 69–72 LUO Hancheng, PAN Weiguo, DING Honglei, et al. The formation mechanism of SO3 from coal-fired boiler flue gasand its control technology[J]. Boiler Technology, 2015, 46(6): 69–72 [5] 束航, 张玉华, 范红梅, 等. SCR脱硝中催化剂表面NH4HSO4生成及分解的原位红外研究[J]. 化工学报, 2015, 66(11): 4460–4468 SHU Hang, ZHANG Yuhua, FAN Hongmei, et al. FT-IR study of formation and decomposition of ammonium bisulfates on surface of SCR catalyst for nitrogen removal[J]. CIESC Journal, 2015, 66(11): 4460–4468 [6] 尹子骏, 苏胜, 卿梦霞, 等. 一种典型钒钛系SCR催化剂SO3生成特性研究[J]. 化工学报, 2021, 72(5): 2596–2603 YIN Zijun, SU Sheng, QING Mengxia, et al. Study on SO3 formation characteristics of a typical vanadium titanium SCR catalyst[J]. CIESC Journal, 2021, 72(5): 2596–2603 [7] WIJAYANTI K, LEISTNER K, CHAND S, et al. Deactivation of Cu-SSZ-13 by SO2 exposure under SCR conditions[J]. Catalysis Science & Technology, 2016, 6(8): 2565–2579. [8] 刘芳琪, 于敦喜, 吴建群, 等. 燃煤锅炉SCR对颗粒物排放特性影响[J]. 化工学报, 2018, 69(9): 4051–4057 LIU Fangqi, YU Dunxi, WU Jianqun, et al. Effect of SCR on particulate matter emissions from a coal-fired boiler[J]. CIESC Journal, 2018, 69(9): 4051–4057 [9] 杨江毅, 陆强, 曲艳超, 等. 选择性脱除三氧化硫技术研究[J]. 环境工程, 2019, 37(1): 106–112 YANG Jiangyi, LU Qiang, QU Yanchao, et al. Research on selective removal of sulfur trioxide[J]. Environmental Engineering, 2019, 37(1): 106–112 [10] DAMLE A S, ENSOR D S, SPARKS L E. Prediction of the opacity of detached plumes formed by condensation of vapors[J]. Atmospheric Environment, 1984, 18(2): 435–444. [11] KIKUCHI R. Environmental management of sulfur trioxide emission: impact of SO3 on human health[J]. Environmental Management, 2001, 27(6): 837–844. [12] 李小龙, 段玖祥, 李军状, 等. 燃煤电厂烟气中SO3控制技术及测试方法探讨[J]. 环境工程, 2017, 35(5): 98–102 LI Xiaolong, DUAN Jiuxiang, LI Junzhuang, et al. Control technology and determination methods of SO3 in flue gas from coal-fired power plants[J]. Environmental Engineering, 2017, 35(5): 98–102 [13] 王宏亮, 薛建明, 许月阳, 等. 燃煤电站锅炉烟气中SO3的生成及控制[J]. 电力科技与环保, 2014, 30(5): 17–20 WANG Hongliang, XUE Jianming, XU Yueyang, et al. Formation and control of SO3 from coal-fired power plants[J]. Electric Power Technology and Environmental Protection, 2014, 30(5): 17–20 [14] 王正华, 周昊, 翁安心, 等. 不同煤种高温燃烧时NO x和SO2生成影响因素的实验[J]. 锅炉技术, 2003, 34(3): 11–14 WANG Zhenghua, ZHOU Hao, WENG Anxin, et al. A study of NOx and SO2 emission of different coal in high temperature combustion[J]. Boiler Technology, 2003, 34(3): 11–14 [15] 胡斌, 汤诗佳, 王欣星, 等. 脱硫废水蒸发协同脱除烟气SO3实验研究[J]. 徐州工程学院学报(自然科学版), 2021, 36(1): 53–57 HU Bin, TANG Shijia, WANG Xinxing, et al. Experimental study on simultaneous control of SO3 by desulfurization wastewater evaporation[J]. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2021, 36(1): 53–57 [16] 王智, 贾莹光, 祁宁. 燃煤电站锅炉及SCR脱硝中SO3的生成及危害[J]. 东北电力技术, 2005, 26(9): 1–3 WANG Zhi, JIA Yingguang, QI Ning. The creation and harm of SO3 for coal-fired boiler and SCR denitration[J]. Northeastern Electric Power Technology, 2005, 26(9): 1–3 [17] 林翔. 低低温电除尘器提效及多污染物协同治理探讨[J]. 机电技术, 2014, 37(3): 10–13 [18] 刘晓敏. 燃煤电厂烟气SO3迁移转化特性试验分析[J]. 热力发电, 2020, 49(6): 157–162 LIU Xiaomin. Migration and transformation characteristics of SO3 in coal-fired power plants[J]. Thermal Power Generation, 2020, 49(6): 157–162 [19] 杨钊. 商用SCR催化剂氧化SO2及燃煤烟气SO3脱除特性研究[D]. 南京: 东南大学, 2018. YANG Zhao. Study on SO2 oxidation of commercial SCR catalyst and removal characteristics of SO3 from coal-fired flue gas[D]. Nanjing: Southeast University, 2018. [20] ZHENG C H, WANG Y F, LIU Y, et al. Formation, transformation, measurement, and control of SO3 in coal-fired power plants[J]. Fuel, 2019, 241: 327–346. [21] XIAO H P, CHEN Y, QI C, et al. Effect of Na poisoning catalyst (V2O5-WO3/TiO2) on denitration process and SO3 formation[J]. Applied Surface Science, 2018, 433: 341–348. [22] 卿梦霞. 燃煤烟气SO3与硫酸氢铵生成机理研究[D]. 武汉: 华中科技大学, 2019. QING Mengxia. Study on generation mechanism of SO3 and ammounium hydrogen sulfate in coal-fired flue gas[D]. Wuhan: Huazhong University of Science and Technology, 2019. [23] 胡敏, 郭宏昶, 刘宗余. 催化裂化烟气蓝色烟羽形成原因分析与对策[J]. 炼油技术与工程, 2015, 45(11): 7–12 HU Min, GUO Hongchang, LIU Zongyu. Study on formation of blue smoke plume of FCCU flue gas and countermeasures[J]. Petroleum Refinery Engineering, 2015, 45(11): 7–12 [24] LU J Y, ZHOU Z Y, ZHANG H Z, et al. Influenced factors study and evaluation for SO2/SO3 conversion rate in SCR process[J]. Fuel, 2019, 245: 528–533. [25] MA J R, LIU Z Y, LIU Q Y, et al. SO2 and NO removal from flue gas over V2O5/AC at lower temperatures—role of V2O5 on SO2 removal[J]. Fuel Processing Technology, 2008, 89(3): 242–248. [26] GUO X Y, BARTHOLOMEW C, HECKER W, et al. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems[J]. Applied Catalysis B:Environmental, 2009, 92(1/2): 30–40. [27] 刘亚明, 束航, 徐齐胜, 等. SCR脱硝过程中SO2催化氧化的原位红外研究[J]. 燃料化学学报, 2015, 43(8): 1018–1024 LIU Yaming, SHU Hang, XU Qisheng, et al. FT-IR study of the catalytic oxidation of SO2 during the process of selective catalytic reduction of NO with NH3 over commercial catalysts[J]. Journal of Fuel Chemistry and Technology, 2015, 43(8): 1018–1024 [28] 刘含笑, 郦建国, 姚宇平, 等. 低低温电除尘系统对SO3脱除性能研究[J]. 发电技术, 2022, 43(1): 147–154 LIU Hanxiao, LI Jianguo, YAO Yuping, et al. Study on SO3 removal performance of low-low temperature electrostatic precipitator system[J]. Power Generation Technology, 2022, 43(1): 147–154 [29] 杜振, 杨立强, 魏宏鸽, 等. 低低温电除尘器对粉尘特性和SO3脱除效果影响分析[J]. 中国电力, 2017, 50(9): 125–128 DU Zhen, YANG Liqiang, WEI Hongge, et al. Analysis on the impacts of low-low temperature eletrostatic precipitator on dust characteristics and SO3 removal effect[J]. Electric Power, 2017, 50(9): 125–128 [30] NAKAYAMA Y, TAKEUCHI Y, ITOH M, et al. MHI high efficiency system-proven technology for multi pollutant removal[R]. Hiroshima Research & Development Center. 2011: 1–11. [31] 胡斌, 刘勇, 任飞, 等. 低低温电除尘协同脱除细颗粒与SO3实验研究[J]. 中国电机工程学报, 2016, 36(16): 4319–4325,4514 HU Bin, LIU Yong, REN Fei, et al. Experimental study on simultaneous control of fine particle and SO3 by low-low temperature electrostatic precipitator[J]. Proceedings of the CSEE, 2016, 36(16): 4319–4325,4514 [32] 张绪辉. 低低温电除尘器对细颗粒物及三氧化硫的协同脱除研究[D]. 北京: 清华大学, 2015. ZHANG Xuhui. Studies on synergetic removal of fine particulates and SO3 by an extra cold-side electrostatic precipitator[D]. Beijing: Tsinghua University, 2015. [33] 张悠. 烟气中SO3测试技术及其应用研究[D]. 杭州: 浙江大学, 2013. ZHANG You. Research and application of SO3 measurement in flue gas[D]. Hangzhou: Zhejiang University, 2013. [34] YANG F X, LIU H X, FENG P, et al. Effects of wet flue gas desulfurization and wet electrostatic precipitator on particulate matter and sulfur oxide emission in coal-fired power plants[J]. Energy & Fuels, 2020, 34(12): 16423–16432. [35] PAN D P, ZHANG D P, ZHANG W D. Investigation on removal characteristics of SO3 acid mist during limestone-gypsum desulfurization process[J]. Energy & Fuels, 2018, 32(12): 12949–12954.
|