[1] 晏敏, 张杨, 郭博闻, 等. 基于全寿命周期成本的SCR脱硝系统优化分析[J]. 中国电力, 2021, 54(3): 191–196 YAN Min, ZHANG Yang, GUO Bowen, et al. Analysis on the optimization of SCR denitrification system based on life cycle cost[J]. Electric Power, 2021, 54(3): 191–196 [2] 华晨飞, 朱林, 姚杰, 等. 废烟气脱硝催化剂资源回用载体的品质及特性研究[J]. 中国电力, 2021, 54(2): 197–204 HUA Chenfei, ZHU Lin, YAO Jie, et a1. Research on the quality and characteristics of carriers for resource reuse of waste flue gas denitration catalyst[J]. Electric Power, 2021, 54(2): 197–204 [3] 赵宏, 张发捷, 马云龙, 等. 燃煤电厂SCR脱硝氨逃逸迁移规律试验研究[J]. 中国电力, 2021, 54(1): 196–202 ZHAO Hong, ZHANG Fajie, MA Yunlong, et a1. Test study on the migration characteristics of slip ammonia from the SCR system in the coal-fired power plant[J]. Electric Power, 2021, 54(1): 196–202 [4] 刘志坦, 姚杰, 庄柯, 等. 燃气轮机与燃煤机组SCR脱硝催化剂特性比较[J]. 中国电力, 2021, 54(6): 145–152 LIU Zhitan, YAO Jie, ZHUANG Ke, et a1. Comparison of characteristics of SCR-DeNOx catalyst for gas-turbine units and coal-fired units[J]. Electric Power, 2021, 54(6): 145–152 [5] STREGE J R, ZYGARLICKE C J, FOLKEDAHL B C, et al. SCR deactivation in a full-scale cofired utility boiler[J]. Fuel, 2008, 87(7): 1341–1347. [6] LISI L, LASORELLA G, MALLOGGI S, et a1. Single and combined deactivating effect of alkali metals and HCl on commercial SCR catalysts[J]. Applied Catalysis B:Environmental, 2004, 50(4): 251–258. [7] 王宝冬, 汪国高, 刘斌, 等. 选择性催化还原脱硝催化剂的失活、失效预防、再生和回收利用研究进展[J]. 化工进展, 2013, 32(增刊1): 133–139 WANG Baodong, WANG Guogao, LIU Bin, et al. Development of SCR catalyst deactivation, regeneration and recycling[J]. Chemical Industry and Engineering Progress, 2013, 32(S1): 133–139 [8] PRITCHARD S, DIFRANCESCO C, KANEKO S, et a1. Optimizing SCR catalyst design and performance for coal-fired boilers[C]//Proceedings of the EPA/EPRI Symposium on Stationary Combination NOx Control, 1995: 16-19. [9] CHEN J P, BUZANOWSKI M A, YANG R T, et al. Deactivation of the vanadia catalyst in the selective catalytic reduction process[J]. Journal of the Air & Waste Management Association, 1990, 40(10): 1403–1409. [10] 余岳溪, 廖永进, 束航, 等. SO2与H2O对商用钒钨钛脱硝催化剂毒化作用综述[J]. 中国电力, 2016, 49(12): 168–173 YU Yuexi, LIAO Yongjin, SHU Hang, et al. Review of SO2 and H2O poisoning over commercial vanadium-titanium catalysts in the selective catalytic reduction denitration[J]. Electric Power, 2016, 49(12): 168–173 [11] PENG Y, LI J H, SI W Z, et al. Deactivation and regeneration of a commercial SCR catalyst: comparison with alkali metals and arsenic[J]. Applied Catalysis B:Environmental, 2015, 168-169: 195–202. [12] 沈伯雄, 熊丽仙, 刘亭. 负载型V2O5-WO3/TiO2催化剂的砷中毒研究[J]. 燃料化学学报, 2011, 39(11): 856–859 SHEN Boxiong, XIONG Lixian, LIU Ting. Study on arsenic poisoning for loading catalyst of V2O5-WO3/TiO2[J]. Journal of Fuel Chemistry and Technology, 2011, 39(11): 856–859 [13] HILBRIG F, GOBEL H E, KNOZINGER H, et al. Interaction of arsenious oxide with DeNO x-catalysts: an X-Ray absorption and diffuse reflectance infrared spectroscopy study[J]. Journal of Catalysis, 1991, 129(1): 168–176. [14] KONG M, LIU Q C, WANG X Q, et al. Performance impact and poisoning mechanism of arsenic over commercial V2O5-WO3/TiO2 SCR catalyst[J]. Catalysis Communications, 2015, 72: 121–126. [15] 朱春华, 陆强, 庄柯, 等. 燃煤电厂砷中毒SCR脱硝催化剂的失活特性研究[J]. 应用化工, 2018, 47(6): 1145–1149,1161 ZHU Chunhua, LU Qiang, ZHUANG Ke, et al. Research on the deactivation of arsenic poisoned SCR De-NO catalyst in coal-fired power plants[J]. Applied Chemical Industry, 2018, 47(6): 1145–1149,1161 [16] LI X, LI J H, PENG Y, et al. Regeneration of commercial SCR catalysts: probing the existing forms of arsenic oxide[J]. Environmental Science & Technology, 2015, 49(16): 9971–9978. [17] 姚燕, 马云龙, 杨晓宁, 等. 高砷煤SCR脱硝催化剂中毒失活研究[J]. 中国电力, 2020, 53(6): 191–196 YAO Yan, MA Yunlong, YANG Xiaoning, et al. Deactivation of honeycomb SCR catalysts in high-arsenic coal-fired power plant[J]. Electric Power, 2020, 53(6): 191–196 [18] KWON D W, PARK K H, HONG S C. The influence on SCR activity of the atomic structure of V2O5/TiO2 catalysts prepared by a mechanochemical method[J]. Applied Catalysis A: General, 2013, 451: 227–235. [19] CHEN L, LI J H, GE M F. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NO x by NH3[J]. Chemical Engineering Journal, 2011, 170(2-3): 531–537. [20] PARVULESCU V I, GRANGE P, DELMON B. Catalytic removal of NO[J]. Catalysis Today, 1998, 46(4): 233–316.
|