[1] NOVA I, CIARDELLI C,TRONCONI E, et al. NH3-NO/NO2 chemistry over V-based catalysts and its role in the mechanism of the fast SCR reaction [J]. Catalysis Today, 2006, 114(1): 3-12. [2] 马双忱,金鑫,孙云雪,等. SCR烟气脱硝过程硫酸氢铵的生成机理与控制[J]. 热力发电,2010,39(8):12-17. MA Shuangchen, JIN xin, SUN Yunxue, et al. The formation mechanism of ammonium bisulfate in SCR flue gas denitration process and control thereof[J]. Thermal Power Generation, 2010, 39(8): 12-17. [3] STREGE J R, ZYGARLICKE C J, BRUCE C, et al. Bench-scale study of interactions between flue gas and coal fired ash in an SCR [J]. Fuel, 2006, 85(17): 2439-2444. [4] ZHENG Y, JENSEN A D, JOHNSSON J E. Laboratory investigation of selective catalytic reduction catalysts: Deactivation by potassium compounds and catalyst generation[J] .Industrial & Engineering Chemistry Research, 2004, 43(4): 941-947. [5] 马双忱,郭蒙,宋卉卉,等. 选择性催化还原过程中硫酸氢铵形成机理及影响因素[J]. 热力发电,2014,43(2):75-78,86. MA Shuangchen, GUO Meng, SONG Huihui, et al. Formation mechanism and influencing factors of ammonium bisulfate during the selective catalytic reduction process[J]. Thermal Power Generation, 2014, 43(2): 75-78, 86. [6] PRVULESCU V I, GRANGE P, DELMON B. Catalytic removal of NO[J]. Catalysis Today, 1998, 46(4): 233-316. [7] 姚宣,郑鹏,郑伟. SCR脱硝系统最低连续喷氨温度的研究[J].中国电力,2016,49(1):146-150. YAO Xuan, ZHENG Peng, ZHENG Wei. Study on minimum continuous-operation temperature of SCR system[J]. Electric Power, 2016, 49(1): 146-150. [8] 陈崇明,张立军,宋国升,等. 某电厂600 MW机组烟气脱硝系统性能评价[J]. 中国电力,2015,48(4):47-49, 53. CHEN Chongming, ZHANG Lijun, SONG Guoshen, et al.Evaluation of SCR system performance for the 600-MW generation unit of a power plant[J]. Electric Power, 2015, 48(4):47-49, 53. [9] 张玉华,束航,范红梅,等. 商业V2O5-WO3/TiO2催化剂SCR脱硝过程中PM2.5的排放特性及影响因素研究[J]. 中国电机工程学报,2015,35(2):383-389. ZHANG Yuhua, SHU Hang, FAN Hongmei, et al. Research on emission characteristic and influencing factors of PM2.5 for selective catalystic reduction based on V2O5-WO3/TiO2 commercial catalysts[J]. Proceeding of the CSEE, 2015, 35(2): 383-389. [10] LI Pan, LIU Qingya, LIU Zhenyu. Behaviors of NH4HSO4 in SC of NO by NH3 over different cokes[J]. Chemical Engineering Journal, 2012, 181: 169-173. [11] JIN Ruiben, LIU Yue, WU Zhongbiao, et al. Relationship between SO2 poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn-Ce/TiO2 catalyst [J]. Catalysis Today, 2010, 153(3/4): 84-89. [12] GUO X, BARTHOLOMEW C, HECKER W, et al. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass- fired systems[J]. Applied Catalysis B: Environmental, 2009, 92(1/2): 30-40. [13] 于国峰,韦彦斐,金瑞奔,等. Mn-Ce-Co/TiO2催化剂低温脱硝活性研究[J]. 环境科学学报,2012,32(7):1743-1749. YU Guofeng, WEI Yanfei, JIN Ruiben, et al. Study on the DeNOx activity of the Mn-Ce-Co/TiO2 catalyst at low temperature[J]. Acta Scientiae Circumstantiae, 2012, 32(7): 1743-1749. [14] ZHU Zhenping, NIU Hongxian, LIU Zhenyu. Decomposition and reactivity of NH4HSO4 on V2O5/AC catalysts[J]. Journal of Catalysis, 2000, 195(2): 268-278. [15] LIU Fudong, HE Hong. Selective catalytic reduction of NO with NH3 over manganese substituted iron titanate catalyst: Reaction mechanism and H2O/SO2 inhibition mechanism study [J]. Catalysis Today, 2010, 153(S3/4): 70-76. [16] 范红梅,张玉华,束航,等. SCR脱硝过程中细颗粒物排放特性[J]. 中南大学学报(自然科学版),2016,47(1):321-329. FAN Hongmei, ZHANG Yuhua, SHU Hang, et al. Characteristics of fine particulates emission from SCR reactor[J]. Journal of Central South University (Science and Technology), 2016, 47(1):321-329. [17] Dunn J P, STENGER H G, WACHS I E. Molecular structure-reactivity relationships for the oxidation of sulfur dioxide over supported metal oxide catalysts [J]. Catalysis Today, 1999, 53(4): 543-556. [18] LONG R Q, YANG R T.FTIR and kinetic studies of the mechanism of Fe3+ -exchanged TiO2-pillared clay catalyst for selective catalytic reduction of NO with ammonia[J]. Catalysis Letters, 1998, 190(1): 22-31. [19] OZKAN U S, CAI Y, KUMTHEKAR M W, et al. Role of ammonia oxidation in selective catalytic reduction of nitric oxide over vanadia catalysts [J]. Journal of Catalysis, 1993, 142(1): 182-197. [20] OZKAN U S, CAI Y P, KUMTHEKAR M W. Investigation of the reaction pathways in selective catalytic reduction of NO with NH3 over V2O5 catalysts: isotopic labeling studies using 18O2, 15NH3, 15NO [J]. Journal of Catalysis, 1994, 149(2): 390-403. [21] PAN Siwei, LUO Hongcheng. H2O and SO2 deactivation mechanism of MnOx/MWCNTs for low-temperature SCR of NOx with NH3[J]. Journal of Molecular Catalysis A: Chemical, 2013, 377: 154-161. [22] TUFANO V, TURCO M. Kinetic modelling of nitric oxide reduction over a high-surface area V2O5-TiO2 catalyst [J]. Applied Catalysis B: Environmental, 1992, 2(1): 9-26. [23] ODENBRAND C U I, GABRIELSSON P L T, BRANDIN J G M, et al. Effect of water vapor on the selectivity in the reduction of nitric oxidewith ammonia over vanadia supported on silica-titania[J].Applied Catalysis, 1991, 78(1): 109-122. [24] 黄张根,朱珍平,刘振宇. 水对V2O5/AC催化剂低温还原NO的影响[J].催化学报,2001,22(6):532-536. HUANG Zhanggen, ZHU Zhenping, LIU Zhenyu. Effect of water on V2O5/AC catalyst for NO reduction by NH3 at lower temperature[J]. Chinese Journal of Catalysis, 2001, 22(6): 532-536. [25] 毛剑宏,宋浩,吴卫红,等. 制备条件对蜂窝状V2O5-WO3/TiO2催化剂孔结构及活性的影响研究[J]. 动力工程学报,2011,31(4):300-305. MAO Jianhong, SONG Hao, WU Weihong, et al. Influence of prepration conditions on pore structure and activity of V2O5-WO3/TiO2 honeycomb catalysts [J]. Journal of Chinese Society of Power Engineering, 2011, 31(4): 300-305. [26] 姜烨,高翔,吴卫红,等. 选择性催化还原脱硝催化剂失活研究综述[J]. 中国电机工程学报,2013,33(14):18-31. JIANG Ye, GAO Xiang, WU Weihong, et al. Review of the deactivation of selective catalystic reduction De-NOx catalysts [J]. Proceeding of the CSEE, 2013, 33(14): 18-31. [27] 张强. 燃煤电站SCR烟气脱硝技术及工程应用[M]. 化学工业出版社,2007:25. [28] 张烨,徐晓亮,缪明烽. SCR脱硝催化剂失活机理研究进展[J].能源环境保护,2011,25(4):14-18. ZHANG Ye, XU Xiaoliang, MIAO Mingfeng. Advance in deactivation mechanism for SCR denitration catalyst[J]. Energy Environmental Protection, 2011, 25(4): 14-18. [29] QIANG Huasong, LIU Qingcai. Deactivation and regeneration of SCR De-NOx catalyst [J]. Materials Review, 2008, 22(S XII): 285-287. [30] 邹斯诣. 选择性催化还原(SCR)脱硝技术应用问题及对策[J]. 节能技术,2009,27(6):510-512. ZOU Siyi. Problems and countermeasures in selective catalystic reduction De-NOx technology application[J]. Energy Conservation Technology, 2009, 27(6): 510-512. [31] SRIVASTAVA R K, MILLER C A, ERICKSON C, et al. Emissions of sulfur trioide from coalfired power plants[J]. Air & Waste, 2004, 54(6): 750-762. [32] 曹志勇,谭城军,李建中,等. 燃煤锅炉SCR烟气脱硝系统喷氨优化调整试验[J]. 中国电力,2011,44(11):55-58. CAO Zhiyong, TAN Chengjun, LI Jianzhong, et al. Experinment of optimization adjustment for ammonia injection of selective catalystic reduction flue gas denitration system in coal-fired boiler[J]. Electric Power, 2011, 44(11): 55-58. [33] 汤元强,赵亮,吴国江. SCR脱硝系统喷氨格栅优化设计[J]. 热力发电,2013,42(3):58-62. TANG Yuanqiang, ZHAO Liang, WU Guojiang. Design optimization of ammonia injection grid in SCR denitrification system [J]. Thermal Power Generation, 2013, 42(3): 58-62. [34] BUSCA G, LIETTI L, RAMIS G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Applied Catalysis B: Environmental, 1998, 18(1-2): 1-36. [35] YU Jian, GUO Feng, WANG Yingli. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3 [J]. Applied Catalysis B: Environment, 2010, 95: 160-168. |