[1] 李德波, 廖永进, 陆继东, 等. 燃煤电站SCR催化剂更换周期及策略优化数学模型[J]. 中国电力, 2013, 46(12): 118-121 LI Debo, LIAO Yongjin, LU Jidong, et al. Study on mathematical models for optimization of SCR catalyst replacement cycle and strategy[J]. Electric Power, 2013, 46(12): 118-121 [2] MUZIO L, SMITH R, MUNCY J, et al. Protocol for laboratory testing SCR catalyst samples[R]. Palo Alto, California, 2006. [3] Guideline for the testing of DeNOx catalysts: VGB-R 302 H-2010 [S]. 2010. [4] 宋玉宝, 杨杰, 金理鹏, 等. SCR脱硝催化剂宏观性能评估和寿命预测方法研究[J]. 中国电力, 2016, 49(4): 17-22 SONG Yubao, YANG Jie, JIN Lipeng, et al. Study on methodology of SCR catalyst macroscopical performance evaluation and lifetime prediction[J]. Electric Power, 2016, 49(4): 17-22 [5] JENSEN O R, SLABIAK T, WHITE N. Arsenic resistant SCR catalysts[R]. Lyngby: Haldor Topsoe Inco, 2005. [6] 孙克勤, 钟秦, 于爱华. SCR催化剂的砷中毒研究[J]. 中国环保产业, 2008(1): 40-42 SUN Keqin, ZHONG Qin, YU Aihua. Study on arsenic poisoning of SCR catalyst[J]. China Environmental Protection Industry, 2008(1): 40-42 [7] 高燕, 白向飞, 王越. 霍林河14#煤中微量元素的分布赋存特征研究[J]. 煤炭转化, 2015, 38(2): 1-5 GAO Yan, BAI Xiangfei, WANG Yue. Distribution and occurrence of trace elements in 14# Huolinhe coal[J]. Coal Conversion, 2015, 38(2): 1-5 [8] 王起超, 邵庆春, 康淑莲, 等. 煤中15种微量元素在燃烧产物中的分配[J]. 燃料化学学报, 1996, 24(2): 137-142 WANG Qichao, SHAO Qingchun, KANG Shulian, et al. Distribution of 15 trace elements in the combustion products of coal[J]. Journal of Fuel Chemistry and Technology, 1996, 24(2): 137-142 [9] HUMS E. Mechanistic effects of arsenic oxide on the catalytic components of DeNOx catalysts[J]. Industrial & Engineering Chemistry Research, 1992, 31(4): 1030-1035. [10] 沈伯雄, 熊丽仙, 刘亭. 负载型V2O5-WO3/TiO2催化剂的砷中毒研究[J]. 燃料化学学报, 2011, 39(11): 856-859 SHEN Boxiong, XIONG Lixian, LIU Ting. Study on arsenic poisoning for loading catalyst of V2O5-WO3/TiO2[J]. Journal of Fuel Chemistry and Technology, 2011, 39(11): 856-859 [11] 付建, 刘国, 薛志钢, 等. 燃煤电厂砷的动态分布及排放特征[J]. 中国电力, 2013, 46(3): 95-99 FU Jian, LIU Guo, XUE Zhigang, et al. Configuration distribution and emission characteristics of arsenic from coal-fired power plants[J]. Electric Power, 2013, 46(3): 95-99 [12] JAMES E, TONY E, WILLIAM H, et al. The impact of arsenic on coal fired power plants equipped with SCR [C]// ICAC 2002 forum, Operating Experience for Reducing NOx Emissions. Houston, 2002. [13] HANS J H, TOPSØE N Y, 崔建华. 选择催化还原(SCR)脱硝技术在中国燃煤锅炉上的应用(上)[J]. 热力发电, 2007, 36(8): 13-18 HANS J H, TOPSØE N Y, CUI Jianhua. Application of SCR denitrification technology onto coal-fired boilers in China[J]. Thermal Power Generation, 2007, 36(8): 13-18 [14] 王泉海, 刘迎晖, 张军营, 等. CaO对烟气中砷的形态和分布的影响[J]. 环境科学学报, 2003, 23(4): 549-551 WANG Quanhai, LIU Yinghui, ZHANG Junying, et al. Effect of CaO on the speciation of arsenic in flue gases[J]. Acta Scientiae Circumstantiae, 2003, 23(4): 549-551 [15] 张军营, 任德贻, 钟秦, 等. CaO对煤中砷挥发性的抑制作用[J]. 燃料化学学报, 2000, 28(3): 198-200 ZHANG Junying, REN Deyi, ZHONG Qin, et al. Restraining of arsenic volatility using lime in coal combustion[J]. Journal of Fuel Chemistry and Technology, 2000, 28(3): 198-200 [16] HUMS E. A catalytically highly-active, arsenic oxide resistant V-Mo-O phase-results of studying intermediates of the deactivation process of V2O5-MoO3-TiO2(anatase) DeNOx catalysts[J]. Research on Chemical Intermediates, 1993, 19(5): 419-441. [17] 姚燕, 王乐乐, 李乐田, 等. 燃煤电厂选择性催化还原脱硝催化剂砷中毒分析[J]. 热力发电, 2018, 47(10): 31-36 YAO Yan, WANG Lele, LI Letian, et al. Arsenic deactivation of honeycomb SCR catalysts in coal-fired power plants[J]. Thermal Power Generation, 2018, 47(10): 31-36 [18] GUO X Y. Poisoning and sulfation on vanadia SCR catalyst[D]. Utah: Brigham Young University, 2006. [19] LANGE F C, SCHMELZ H, KNÖZINGER H. Infrared-spectroscopic investigations of selective catalytic reduction catalysts poisoned with arsenic oxide[J]. Applied Catalysis B: Environmental, 1996, 8(2): 245-265. [20] SHEN Boxiong, YAO Yan, CHEN Jianhong, et al. Alkali metal deactivation of Mn-CeOx/Zr-delaminated-clay for the low-temperature selective catalytic reduction of NOx with NH3[J]. Microporous and Mesoporous Materials, 2013, 180: 262-269. [21] TOPSOE N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy[J]. Science, 1994, 265(5176): 1217-1219. |