中国电力 ›› 2023, Vol. 56 ›› Issue (11): 67-76.DOI: 10.11930/j.issn.1004-9649.202305083
• 面向电网设备状态感知的低功耗无线传感网技术及应用 • 上一篇 下一篇
收稿日期:
2023-05-18
接受日期:
2023-10-12
出版日期:
2023-11-28
发布日期:
2023-11-28
作者简介:
安春燕(1987—),女,通信作者,博士,高级工程师(教授级),从事感知与通信安全技术研究,E-mail: anchunyan@geiri.sgcc.com.cn基金资助:
Chunyan AN1(), Yang LU1(
), Di ZHAI1, Xueqiong ZHU2
Received:
2023-05-18
Accepted:
2023-10-12
Online:
2023-11-28
Published:
2023-11-28
Supported by:
摘要:
电力智能传感器及传感网安全研究处于起步阶段,资源受限及应用现场缺乏低压供电导致对安全开销极其敏感,用户侧广泛部署更易遭受侧信道等物理攻击,利用感知机理或数据处理算法发起的新型攻击日渐增多。针对上述问题,结合现场特点、业务特征、设备能力及行业现状,分析电力智能传感器及传感网安全需求,构建安全技术体系,归纳总结电力智能传感器具备特殊需求的感知安全、存储安全、轻量级加密、身份认证、代码安全和固件安全等技术研究现状,提出发展建议,为构建安全、可靠的能源电力数据基座提供支撑。
安春燕, 陆阳, 翟迪, 朱雪琼. 电力智能传感器及传感网安全防护技术[J]. 中国电力, 2023, 56(11): 67-76.
Chunyan AN, Yang LU, Di ZHAI, Xueqiong ZHU. Security Protection of Electrical Intelligent Sensors and Sensor Networks[J]. Electric Power, 2023, 56(11): 67-76.
身份认证因子 | 安全特性 | 安全特性状况 | ||
设备ID | 唯一性 | 一般 | ||
不可复制性 | 较差 | |||
随机性 | 一般 | |||
稳定性 | 非常好 | |||
数字证书 | 唯一性 | 一般 | ||
不可复制性 | 一般 | |||
随机性 | 一般 | |||
稳定性 | 非常好 | |||
硬件指纹 (射频指纹、PUF、 过电压特性) | 唯一性 | 非常好 | ||
不可复制性 | 非常好 | |||
随机性 | 非常好 | |||
稳定性 | 一般 |
表 1 身份认证因子及其安全性
Table 1 Identity authentication factors and their security
身份认证因子 | 安全特性 | 安全特性状况 | ||
设备ID | 唯一性 | 一般 | ||
不可复制性 | 较差 | |||
随机性 | 一般 | |||
稳定性 | 非常好 | |||
数字证书 | 唯一性 | 一般 | ||
不可复制性 | 一般 | |||
随机性 | 一般 | |||
稳定性 | 非常好 | |||
硬件指纹 (射频指纹、PUF、 过电压特性) | 唯一性 | 非常好 | ||
不可复制性 | 非常好 | |||
随机性 | 非常好 | |||
稳定性 | 一般 |
1 |
吴钢, 周金辉, 李慧. 面向边缘增强分布式电力无线传感网的资源分配[J]. 中国电力, 2023, 56 (8): 77- 85, 98.
DOI |
WU Gang, ZHOU Jinhui, LI Hui. Resource allocation for edge-enhanced distributed power wireless sensor network[J]. Electric Power, 2023, 56 (8): 77- 85, 98.
DOI |
|
2 | SAM Seamless Network. 2021 IoT security landscape[R/OL]. (2022-04-07)[2023-05-09].https://securingsam.com/2021-iot-security-landscape/. |
3 |
赵建立, 向佳霓, 汤卓凡, 等. 虚拟电厂在上海的实践探索与前景分析[J]. 中国电力, 2023, 56 (2): 1- 13.
DOI |
ZHAO Jianli, XIANG Jiani, TANG Zhuofan, et al. Practice exploration and prospect analysis of virtual power plant in Shanghai[J]. Electric Power, 2023, 56 (2): 1- 13.
DOI |
|
4 | ZHU M N, ZHANG P H, WANG C, et al. Research and analysis on measurement error of three-phase electricity meter with magnetic field interference[C]//2022 2nd International Conference on Electrical Engineering and Control Science (IC2ECS). Nanjing, China. IEEE, 2023: 123–128. |
5 | THYS S, VAN RANST W, GOEDEMÉ T. Fooling automated surveillance cameras: adversarial patches to attack person detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach, CA, USA. IEEE, 2020: 49–55. |
6 | 全国信息安全标准化技术委员会. 信息安全技术 网络安全等级保护基本要求: GB/T 22239—2019[S]. 北京: 中国标准出版社, 2019. |
China Information Security Standardization Technical Committee. Information security technology-baseline for classified protection of cybersecurity: GB/T 22239—2019[S]. Beijing: Standards Press of China, 2019. | |
7 | 全国信息安全标准化技术委员会. 信息安全技术 物联网感知层接入通信网的安全要求: GB/T 37093—2018[S]. 北京: 中国标准出版社, 2018. |
China Information Security Standardization Technical Committee. Information security technology-security requirements for IoT sensing layer access to communication network: GB/T 37093—2018[S]. Beijing: Standards Press of China, 2018. | |
8 | 全国信息安全标准化技术委员会. 信息安全技术 物联网感知终端应用安全技术要求: GB/T 36951—2018[S]. 北京: 中国标准出版社, 2018. |
China Information Security Standardization Technical Committee. Information security technology—Security technical requirements for application of sensing terminals in internet of things: GB/T 36951—2018[S]. Beijing: Standards Press of China, 2018. | |
9 | 国家电网有限公司互联网部. 电力物联网全场景安全技术要求: Q/GDW 12108—2021[S]. 北京: 国家电网有限公司, 2021. |
Internet Department of SGCC. Full scene security technical requirements of eIoT: Q/GDW 12108-2021[S]. Beijing: State Grid Corporation of China, 2021. | |
10 | 国家电网有限公司互联网部. 电力物联网感知层设备接入安全技术规范: Q/GDW 12109—2021[S]. 北京: 国家电网有限公司, 2021. |
Internet Department of SGCC. Technical specifications for security access of sensing layer devices in eIoT: Q/GDW 12109—2021[S]. Beijing: State Grid Corporation of China, 2021. | |
11 | 国家电网有限公司互联网部. 电网智能业务终端接入规范: Q/GDW 12147—2021[S]. 北京: 国家电网有限公司, 2021. |
Internet Department of SGCC. Access specification for intelligent terminal of power grid: Q/GDW 12147-2021[S]. Beijing: State Grid Corporation of China, 2021. | |
12 | 国家电网有限公司互联网部. 电力物联网感知层技术导则: Q/GDW 12100—2021[S]. 北京: 国家电网有限公司, 2021. |
Internet Department of SGCC. Technical guide for perception layer of electric IoT: Q/GDW 12100-2021[S]. Beijing: State Grid Corporation of China, 2021. | |
13 |
XU W Y, YAN C, JIA W B, et al. Analyzing and enhancing the security of ultrasonic sensors for autonomous vehicles[J]. IEEE Internet of Things Journal, 2018, 5 (6): 5015- 5029.
DOI |
14 | YAN C, ZHANG G M, JI X Y, et al. The feasibility of injecting inaudible voice commands to voice assistants[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18 (3): 1108- 1124. |
15 | TANAKA T, SUGAWARA T. Laser-based signal-injection attack on piezoresistive MEMS pressure sensors[C]//2022 IEEE Sensors. Dallas, TX, USA. IEEE, 2022: 1–4. |
16 |
JI X Y, CHENG Y S, XU W Y, et al. No seeing is also believing: electromagnetic-emission-based application guessing attacks via smartphones[J]. IEEE Transactions on Mobile Computing, 2023, 22 (2): 1095- 1109.
DOI |
17 |
王永娟, 樊昊鹏, 代政一, 等. 侧信道攻击与防御技术研究进展[J]. 计算机学报, 2023, 46 (1): 202- 228.
DOI |
WANG Yongjuan, FAN Haopeng, DAI Zhengyi, et al. Advances in side channel attacks and countermeasures[J]. Chinese Journal of Computers, 2023, 46 (1): 202- 228.
DOI |
|
18 |
AKRAM A, MUSHTAQ M, BHATTI M K, et al. Meet the sherlock Holmes’ of side channel leakage: a survey of cache SCA detection techniques[J]. IEEE Access, 2020, 8, 70836- 70860.
DOI |
19 | DENG S W, MATYUNIN N, XIONG W J, et al. Evaluation of cache attacks on arm processors and secure caches[J]. IEEE Transactions on Computers, 2022, 71 (9): 2248- 2262. |
20 |
XIE Y F, XUE X Y, YANG J G, et al. A logic resistive memory chip for embedded key storage with physical security[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2016, 63 (4): 336- 340.
DOI |
21 |
NAGARAJAN K, AHMED F U, KHAN M N I, et al. SecNVM: power side-channel elimination using on-chip capacitors for highly secure emerging NVM[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29 (8): 1518- 1528.
DOI |
22 |
LARIMIAN S, MAHMOODI M R, STRUKOV D B. Lightweight integrated design of PUF and TRNG security primitives based on eFlash memory in 55-nm CMOS[J]. IEEE Transactions on Electron Devices, 2020, 67 (4): 1586- 1592.
DOI |
23 |
THAKOR V A, RAZZAQUE M A, KHANDAKER M R A. Lightweight cryptography algorithms for resource-constrained IoT devices: a review, comparison and research opportunities[J]. IEEE Access, 2021, 9, 28177- 28193.
DOI |
24 | ISO/IEC JTC 1/SC 27 Information security, cybersecurity and privacy protection. Information security–lightweight cryptography - part 2: block ciphers: ISO/IEC 29192-2: 2019[S]. 2019. |
25 |
DAS A K, ZEADALLY S, HE D B. Taxonomy and analysis of security protocols for Internet of Things[J]. Future Generation Computer Systems, 2018, 89, 110- 125.
DOI |
26 | 刘客. 嵌入式SoC片上SRAM PUF的设计与实现[D]. 武汉: 华中科技大学, 2013: 1–48. |
LIU Ke. Design and implementation of on-chip SRAM PUF for embedded SoC[D]. Wuhan: Huazhong University of Science and Technology, 2013: 1–48. | |
27 |
GÜNLÜ O, İŞCAN O, SIDORENKO V, et al. Code constructions for physical unclonable functions and biometric secrecy systems[J]. IEEE Transactions on Information Forensics and Security, 2019, 14 (11): 2848- 2858.
DOI |
28 |
AMAN M N, CHUA K C, SIKDAR B. Mutual authentication in IoT systems using physical unclonable functions[J]. IEEE Internet of Things Journal, 2017, 4 (5): 1327- 1340.
DOI |
29 | TAN X, ZHANG J L, ZHANG Y J, et al. A PUF-based and cloud-assisted lightweight authentication for multi-hop body area network[J]. Tsinghua Science and Technology, 2020, 26 (1): 36- 47. |
30 |
GOPE P, SIKDAR B. Lightweight and privacy-preserving two-factor authentication scheme for IoT devices[J]. IEEE Internet of Things Journal, 2019, 6 (1): 580- 589.
DOI |
31 | The state of open source vulnerabilities management [R/OL]. (2019-09-22)[2020-02-25].https://www.whitesourcesoftware.com/open-source-vulnerability-management-report/#hero_section. |
32 | 冯兆文, 刘振慧. 开源软件漏洞安全风险分析[J]. 保密科学技术, 2020, (2): 27- 32. |
33 | Linux Foundation Research Team. Addressing cybersecurity challenges in open source software[R/OL]. (2022-06-30) [2023-04-25].https://www.linuxfoundation.org/research/addressing-cybersecurity-challenges-in-open-source-software. |
34 | 贾培养, 孙鸿宇, 曹婉莹, 等. 开源软件漏洞库综述[J]. 信息安全研究, 2021, 7 (6): 566- 574. |
JIA Peiyang, SUN Hongyu, CAO Wanying, et al. Open source software vulnerability data base overview[J]. Journal of Information Security Research, 2021, 7 (6): 566- 574. | |
35 | LI X, JIANG J J, BENTON S, et al. A large-scale study on API misuses in the wild[C]//2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST). Porto de Galinhas, Brazil. IEEE, 2021: 241–252. |
36 | GU Z X, WU J C, LIU J X, et al. An empirical study on API-misuse bugs in open-source C programs[C]//2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). Milwaukee, WI, USA. IEEE, 2019: 11–20. |
37 | LAZAR D, CHEN H G, WANG X, et al. Why does cryptographic software fail? : a case study and open problems[C]//Proceedings of 5th Asia-Pacific Workshop on Systems. Beijing, China. New York: ACM, 2014: 1–7. |
38 | BRAGA A, DAHAB R. Mining cryptography misuse in online forums[C]//2016 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). Vienna, Austria. IEEE, 2016: 143–150. |
39 |
DANN A, PLATE H, HERMANN B, et al. Identifying challenges for OSS vulnerability scanners-A study & test suite[J]. IEEE Transactions on Software Engineering, 2022, 48 (9): 3613- 3625.
DOI |
40 |
AMANN S, NGUYEN H A, NADI S, et al. A systematic evaluation of static API-misuse detectors[J]. IEEE Transactions on Software Engineering, 2019, 45 (12): 1170- 1188.
DOI |
41 | AN C Y, ZHANG D L, GAO X J, et al. CryptoDetection: a cryptography misuse detection method based on Bi-LSTM[C]//2022 IEEE 8th International Conference on Computer and Communications (ICCC). Chengdu, China. IEEE, 2023: 1244–1249. |
42 |
LAMOTHE M, LI H, SHANG W Y. Assisting example-based API misuse detection via complementary artificial examples[J]. IEEE Transactions on Software Engineering, 2022, 48 (9): 3410- 3422.
DOI |
43 |
汪昕, 陈驰, 赵逸凡, 等. 基于深度学习的API误用缺陷检测[J]. 软件学报, 2019, 30 (5): 1342- 1358.
DOI |
WANG Xin, CHEN Chi, ZHAO Yifan, et al. API misuse bug detection based on deep learning[J]. Journal of Software, 2019, 30 (5): 1342- 1358.
DOI |
|
44 | LI Q, TAN D W, GE X, et al. Understanding security risks of embedded devices through fine-grained firmware fingerprinting[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 19 (6): 4099- 4112. |
45 | 国家互联网应急中心. 联网智能设备安全态势季度报告(2021年第2季度)[R/OL]. (2021-08-10) [2023-04-27].https://www.cert.org.cn/publish/main/68/2021/20210810172517619736236/20210810172517619736236_.html. |
46 | 国家互联网应急中心. 联网智能设备安全态势季度报告(2021年第3季度)[R/OL]. (2021-12-23) [2023-04-27].https://www.cert.org.cn/publish/main/68/2021/20211223143731210674656/20211223143731210674656_.html. |
47 | FENG X T, ZHU X G, HAN Q L, et al. Detecting vulnerability on IoT device firmware: a survey[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 10 (1): 25- 41. |
48 | 国家电网有限公司设备管理部. 输变电设备物联网微功率无线网通信协议: Q/GDW 12020—2019[S]. 北京: 国家电网有限公司, 2019. |
Equipment Management Department of SGCC. Micro-power wireless network communication protocol for the internet of power transmission and transformation equipment: Q/GDW 12020—2019 [S]. Beijing: State Grid Corporation of China, 2019. | |
49 | 国家电网有限公司设备管理部. 输变电设备物联网节点设备无线组网协议: Q/GDW 12021—2019[S]. 北京: 国家电网有限公司, 2019. |
Equipment Management Department of SGCC. Node device wireless networking protocol for the internet of power transmission and transformation equipment: Q/GDW 12021—2019[S]. Beijing: State Grid Corporation of China, 2019. | |
50 |
HE D J, GU H J, LI T H, et al. Toward hybrid static-dynamic detection of vulnerabilities in IoT firmware[J]. IEEE Network, 2021, 35 (2): 202- 207.
DOI |
51 | LI M X, LI F, YIN J, et al. Research on security vulnerability mining technology for terminals of electric power Internet of Things[C]//2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). Chongqing, China. IEEE, 2022: 1638–1642. |
52 | HEMRAM S, KATHRINE G J W, PALMER G M, et al. Firmware vulnerability detection in embedded systems and Internet of Things[C]//2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS). Trichy, India. IEEE, 2023: 1161–1167. |
53 | ZHANG B, XI Z S, GAO K L. Fuzzy test guidance technology for power Internet of Things firmware vulnerability detection[C]//2021 IEEE International Conference on Energy Internet (ICEI). Southampton, United Kingdom. IEEE, 2022: 157–163. |
54 |
WANG Y S, SHEN J J, LIN J, et al. Staged method of code similarity analysis for firmware vulnerability detection[J]. IEEE Access, 2019, 7, 14171- 14185.
DOI |
55 | XIAO J C, ZHAO Y, WANG J Q, et al. Research on large-scale firmware function security detection method based on SimHash[C]//2021 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). Shenyang, China. IEEE, 2021: 170–175. |
56 |
ZHU X B, LI Q B, CHEN Z F, et al. Research on security detection technology for Internet of Things terminal based on firmware code genes[J]. IEEE Access, 2020, 8, 150226- 150241.
DOI |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||