中国电力 ›› 2023, Vol. 56 ›› Issue (10): 43-52.DOI: 10.11930/j.issn.1004-9649.202304059
• 风电机组及场站主动支撑与运行控制监测关键技术 • 上一篇 下一篇
李冰(), 白云山(
), 赵宽(
), 郭聪彬(
), 翟永杰(
)
收稿日期:
2023-04-19
出版日期:
2023-10-28
发布日期:
2023-10-31
作者简介:
李冰 (1977—),男,副教授,硕士生导师,从事电力视觉研究,E-mail: li_bing_hb@126.com基金资助:
Bing LI(), Yunshan BAI(
), Kuan ZHAO(
), Congbin GUO(
), Yongjie ZHAI(
)
Received:
2023-04-19
Online:
2023-10-28
Published:
2023-10-31
Supported by:
摘要:
叶片是风电机组的关键部件之一,易受到自然环境因素的影响,出现胶衣脱落、裂纹、腐蚀等损伤,影响风力发电效率及风电机组运行安全。针对航拍风电机组叶片图像缺陷尺度不一、定位不准确、检测精度低等问题,提出了一种HSCA-YOLOv7的风电机组叶片缺陷检测算法。首先根据无人机采集的风电机组叶片图像,制作叶片数据集,采用Mosaic、MixUp方法进行数据扩增;然后将不同膨胀率的深度可分离卷积引入改进空间金字塔池化(improved spatial pyramid pooling,ISPP)模块,减少池化操作带来的细节损失;提出混合空间通道注意力(hybrid spatial channel attention,HSCA)机制,捕获全局视觉场景上下文,增大目标特征与环境语义差异,解决航拍叶片图像缺陷尺度不一的问题;采用Focal EIoU损失函数,解决预测框长宽被错误放大的问题,提高模型对叶片缺陷的定位能力。实验结果表明,所提算法的均值平均精度、均值平均召回率分别达到83.64%、71.96%,与YOLOv7基线算法相比分别提高3.37%、5%。
李冰, 白云山, 赵宽, 郭聪彬, 翟永杰. 基于HSCA-YOLOv7的风电机组叶片表面缺陷检测算法[J]. 中国电力, 2023, 56(10): 43-52.
Bing LI, Yunshan BAI, Kuan ZHAO, Congbin GUO, Yongjie ZHAI. Surface Defect Detection Algorithm for Wind Turbine Blades Based on HSCA-YOLOv7[J]. Electric Power, 2023, 56(10): 43-52.
组别 | 改进策略 | Macro F1 | mAR/% | mAP/% | ||||
1 | YOLOv7 | 0.77 | 66.96 | 80.27 | ||||
2 | YOLOv7+(1) | 0.78 | 70.05 | 80.90 | ||||
3 | YOLOv7+(2) | 0.78 | 68.27 | 81.51 | ||||
4 | YOLOv7+(3) | 0.79 | 70.35 | 81.41 | ||||
5 | YOLOv7+(1)+(2) | 0.79 | 70.90 | 81.98 | ||||
6 | YOLOv7+(1)+(3) | 0.78 | 70.25 | 83.03 | ||||
7 | YOLOv7+(2)+(3) | 0.80 | 71.36 | 82.33 | ||||
8 | YOLOv7+GAM | 0.73 | 61.24 | 78.57 | ||||
9 | 本文算法 | 0.81 | 71.96 | 83.64 |
表 1 不同改进策略对评价指标的影响
Table 1 Impact of different improvement strategies on evaluation indicators
组别 | 改进策略 | Macro F1 | mAR/% | mAP/% | ||||
1 | YOLOv7 | 0.77 | 66.96 | 80.27 | ||||
2 | YOLOv7+(1) | 0.78 | 70.05 | 80.90 | ||||
3 | YOLOv7+(2) | 0.78 | 68.27 | 81.51 | ||||
4 | YOLOv7+(3) | 0.79 | 70.35 | 81.41 | ||||
5 | YOLOv7+(1)+(2) | 0.79 | 70.90 | 81.98 | ||||
6 | YOLOv7+(1)+(3) | 0.78 | 70.25 | 83.03 | ||||
7 | YOLOv7+(2)+(3) | 0.80 | 71.36 | 82.33 | ||||
8 | YOLOv7+GAM | 0.73 | 61.24 | 78.57 | ||||
9 | 本文算法 | 0.81 | 71.96 | 83.64 |
采用的注意力机制 | Macro F1 | mAR/% | mAP/% | |||
NAM | 0.69 | 58.98 | 76.01 | |||
GAM | 0.75 | 71.36 | 79.69 | |||
CBAM | 0.77 | 68.28 | 79.97 | |||
HSCA | 0.81 | 71.96 | 83.64 |
表 2 不同注意力机制对评价指标的影响
Table 2 Impact of different attention mechanisms on evaluation indicators
采用的注意力机制 | Macro F1 | mAR/% | mAP/% | |||
NAM | 0.69 | 58.98 | 76.01 | |||
GAM | 0.75 | 71.36 | 79.69 | |||
CBAM | 0.77 | 68.28 | 79.97 | |||
HSCA | 0.81 | 71.96 | 83.64 |
改进策略 | AP50/% | mAP/ % | Param/ M | GFLOPs | FPS/ (f·s–1) | |||||||||
胶衣 脱落 | 裂纹 | 表面 腐蚀 | ||||||||||||
YOLOv5 | 76.10 | 71.90 | 84.00 | 77.33 | 7.02 | 15.8 | 166.7 | |||||||
YOLOv7 | 81.43 | 75.09 | 84.29 | 80.27 | 37.21 | 52.6 | 77.4 | |||||||
YOLOv8 | 81.80 | 63.00 | 77.80 | 74.20 | 3.00 | 8.1 | 192.3 | |||||||
Faster RCNN | 81.89 | 67.69 | 79.53 | 76.37 | 41.37 | 164.9 | 12.8 | |||||||
本文算法 | 90.60 | 78.90 | 81.43 | 83.64 | 34.86 | 53.5 | 65.0 |
表 3 实验结果对比
Table 3 Comparison of experimental results
改进策略 | AP50/% | mAP/ % | Param/ M | GFLOPs | FPS/ (f·s–1) | |||||||||
胶衣 脱落 | 裂纹 | 表面 腐蚀 | ||||||||||||
YOLOv5 | 76.10 | 71.90 | 84.00 | 77.33 | 7.02 | 15.8 | 166.7 | |||||||
YOLOv7 | 81.43 | 75.09 | 84.29 | 80.27 | 37.21 | 52.6 | 77.4 | |||||||
YOLOv8 | 81.80 | 63.00 | 77.80 | 74.20 | 3.00 | 8.1 | 192.3 | |||||||
Faster RCNN | 81.89 | 67.69 | 79.53 | 76.37 | 41.37 | 164.9 | 12.8 | |||||||
本文算法 | 90.60 | 78.90 | 81.43 | 83.64 | 34.86 | 53.5 | 65.0 |
1 | 时智勇, 王彩霞, 李琼慧. “十四五”中国海上风电发展关键问题[J]. 中国电力, 2020, 53 (7): 8- 17. |
SHI Zhiyong, WANG Caixia, LI Qionghui. Key issues of China’s offshore wind power development in the “14 th five-year plan”[J]. Electric Power, 2020, 53 (7): 8- 17. | |
2 | 胡蓓, 吴永康, 郭子君, 等. 风力发电叶片裂缝监测技术综述[J]. 高压电器, 2022, 58 (7): 93- 100. |
HU Bei, WU Yongkang, GUO Zijun, et al. Review of wind turbine blade crack monitoring technology[J]. High Voltage Apparatus, 2022, 58 (7): 93- 100. | |
3 | 海涛, 范恒, 王楷杰, 等. 基于PSO-SVM算法的风电机组结冰故障诊断[J]. 智慧电力, 2021, 49 (4): 1- 6, 74. |
HAI Tao, FAN Heng, WANG Kaijie, et al. Fault diagnosis of wind turbine icing based on PSO-SVM algorithm[J]. Smart Power, 2021, 49 (4): 1- 6, 74. | |
4 |
WANG W J, XUE Y, HE C K, et al. Review of the typical damage and damage-detection methods of large wind turbine blades[J]. Energies, 2022, 15 (15): 5672.
DOI |
5 |
MCGUGAN M, MISHNAEVSKY L. Damage mechanism based approach to the structural health monitoring of wind turbine blades[J]. Coatings, 2020, 10 (12): 1223.
DOI |
6 | 黄子恒, 许钊源, 伍剑波, 等. 基于优化模态分解和Xgblr的风机叶片故障诊断方法[J]. 机械设计, 2022, 39 (7): 56- 62. |
HUANG Ziheng, XU Zhaoyuan, WU Jianbo, et al. Fault diagnosis method of fan blade based on optimized modal decomposition and Xgblr[J]. Journal of Machine Design, 2022, 39 (7): 56- 62. | |
7 |
AWADALLAH M, EL-SINAWI A. Effect and detection of cracks on small wind turbine blade vibration using special Kriging analysis of spectral shifts[J]. Measurement, 2020, 151, 107076.
DOI |
8 | 葛畅, 阎洁, 刘永前, 等. 海上风电场运行控制维护关键技术综述[J]. 中国电机工程学报, 2022, 42 (12): 4278- 4292. |
GE Chang, YAN Jie, LIU Yongqian, et al. Review of key technologies for operation control and maintenance of offshore wind farm[J]. Proceedings of the CSEE, 2022, 42 (12): 4278- 4292. | |
9 | 陶显, 侯伟, 徐德. 基于深度学习的表面缺陷检测方法综述[J]. 自动化学报, 2021, 47 (5): 1017- 1034. |
TAO Xian, HOU Wei, XU De. A survey of surface defect detection methods based on deep learning[J]. Acta Automatica Sinica, 2021, 47 (5): 1017- 1034. | |
10 |
孙月莹, 陈俊霖, 张胜茂, 等. 基于改进YOLOv7的毛虾捕捞渔船作业目标检测与计数方法[J]. 农业工程学报, 2023, 39 (10): 151- 162.
DOI |
SUN Yueying, CHEN Junlin, ZHANG Shengmao, et al. Target detection and counting method for Acetes chinensis fishing vessels operation based on improved YOLOv7[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (10): 151- 162.
DOI |
|
11 | 张艳君, 沈平, 郭安辉, 等. 融合CBAM-YOLOv7模型的路面缺陷智能检测方法研究[J/OL]. 重庆理工大学学报(自然科学): 1–7[2023-07-04]. http://kns.cnki.net/kcms/detail/50.1205.T.20230629.1123.002.html. |
ZHANG Yanjun, SHEN Ping, GUO Anhui, et al. . Research on intelligent detection method of pavement defects incorporating CBAM-YOLOv7 model[J/OL]. Journal of Chongqing University of Technology (Natural Science): 1–7[2023-07-04]. http://kns.cnki.net/kcms/detail/50.1205.T.20230629.1123.002.html. | |
12 | 仝卫国, 仪小龙, 李冰, 等. 融合多尺度特征与注意力机制的风机桨叶缺陷检测方法[J]. 电子测量技术, 2022, 45 (24): 166- 172. |
TONG Weiguo, YI Xiaolong, LI Bing, et al. Fan blade defect detection method combining multi-scale features and attention mechanism[J]. Electronic Measurement Technology, 2022, 45 (24): 166- 172. | |
13 |
GUO J H, LIU C, CAO J F, et al. Damage identification of wind turbine blades with deep convolutional neural networks[J]. Renewable Energy, 2021, 174, 122- 133.
DOI |
14 |
ZHANG J J, COSMA G, WATKINS J. Image enhanced mask R-CNN: a deep learning pipeline with new evaluation measures for wind turbine blade defect detection and classification[J]. Journal of Imaging, 2021, 7 (3): 46.
DOI |
15 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL](2022-07-15)[2022-12-21].https://arxiv.org/abs/2207.02696. |
16 | GE Z, LIU S, WANG F, et al. Yolox: Exceeding yolo series in 2021[J/OL]. 2021. DOI:10.48550/arXiv.2107.08430. |
17 | 郑果, 姜玉松, 沈永林. 基于改进YOLOv7的水稻害虫识别方法[J]. 华中农业大学学报, 2023, 42 (3): 143- 151. |
ZHENG Guo, JIANG Yusong, SHEN Yonglin. Recognition of rice pests based on improved YOLOv7[J]. Journal of Huazhong Agricultural University, 2023, 42 (3): 143- 151. | |
18 | LIU Y C, SHAO Z R, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[EB/OL](2021-12-10)[2022-12-21].https://arxiv.org/abs/2112.05561. |
19 |
ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506, 146- 157.
DOI |
20 | 谭兴国, 张高明. 基于无人机巡检的风机叶片表面缺陷检测技术[J/OL]. 电测与仪表: 1–10[2023-04-10]. http://kns.cnki.net/kcms/detail/23.1202.T H.20221013.1050.004.html. |
TAN Guoxing, ZHANG Gaoming. UAV-based inspection of wind turbine blade surface defects detection technology[J/OL]. Electrical Measure-ment & Instrumentation: 1–10[2023-02-02]. http:// kns.cnki.net/ kcms/de-tail/23.1202.TH.20221013. 1050.004.html. | |
21 | 焦嵩鸣, 白健鹏, 首云锋. 风机叶片精准巡视的无人机控制策略研究[J]. 中国电机工程学报, 2023, 43 (10): 3822- 3832. |
JIAO Songming, BAI Jianpeng, SHOU Yunfeng. Research on UAV control strategy for accurate inspection of wind turbine blades[J]. Proceedings of the CSEE, 2023, 43 (10): 3822- 3832. | |
22 | 赵文清, 杨盼盼. 双向特征融合与注意力机制结合的目标检测[J]. 智能系统学报, 2021, 16 (6): 1098- 1105. |
ZHAO Wenqing, YANG Panpan. Target detection based on bidirectional feature fusion and an attention mechanism[J]. CAAI Transactions on Intelligent Systems, 2021, 16 (6): 1098- 1105. | |
23 | WANG J W, XU C, YANG W, et al. A normalized Gaussian Wasserstein distance for tiny object detection[EB/OL](2021-10-26)[2022-12-21].https://arxiv.org/abs/2110.13389. |
24 | LIU Y C, SHAO Z R, TENG Y Y, et al. NAM: normalization-based attention module[EB/OL](2021-11-24)[2022-12-21].https://arxiv.org/abs/2111.12419. |
25 | 黄冬梅, 王玥琦, 胡安铎, 等. 融合多维度特征的绝缘子状态边缘识别方法[J]. 中国电力, 2022, 55 (1): 133- 141. |
HUANG Dongmei, WANG Yueqi, HU Anduo, et al. An edge recognition method for insulator state based on multi-dimension feature fusion[J]. Electric Power, 2022, 55 (1): 133- 141. |
[1] | 宋智伟, 黄新波, 纪超, 张凡, 张烨. 基于PCSA-YOLOv7 Former的输电线路连接金具及其锈蚀检测方法[J]. 中国电力, 2024, 57(6): 141-152. |
[2] | 高岩, 吴汉斌, 张纪欣, 张华铭, 张沛. 基于组合深度学习的光伏功率日前概率预测模型[J]. 中国电力, 2024, 57(4): 100-110. |
[3] | 吴晓刚, 阎洁, 葛畅, 唐雅洁, 倪筹帷, 季青锋. 基于改进GRU-CNN的风光水一体化超短期功率预测方法[J]. 中国电力, 2023, 56(9): 178-186,205. |
[4] | 张鑫, 叶俊杰, 崔瑶, 黄鑫, 仲林林. 基于语义信息距离解耦的变电运维多类别缺陷图像检测[J]. 中国电力, 2023, 56(6): 209-218. |
[5] | 陆友文, 崔昊, 陈佳宁, 彭祥佳, 冯双, 刘栋. 基于RA-CNN和同步相量的风电场次/超同步振荡参数智能辨识方法[J]. 中国电力, 2023, 56(4): 46-55,67. |
[6] | 周震震, 宋云海, 何宇浩, 王黎伟, 黄和燕, 何珏, 朱志航, 闫云凤. 基于分组查询注意力的可扩展电力人员行为分类方法[J]. 中国电力, 2023, 56(11): 77-85. |
[7] | 苏向敬, 宇海波, 符杨, 田书欣, 李海瑜, 耿福海. 基于DALSTM和联合分位数损失的海上风电功率概率预测[J]. 中国电力, 2023, 56(11): 10-19. |
[8] | 陈铁, 张治藩, 李咸善, 陈一夫, 李鸿鑫. 基于混合模态分解和LSTM-CNN的变压器油中溶解气体浓度预测[J]. 中国电力, 2023, 56(1): 132-141. |
[9] | 樊江川, 于昊正, 刘慧婷, 杨丽君, 安佳坤. 基于多分支门控残差卷积神经网络的短期电力负荷预测[J]. 中国电力, 2022, 55(11): 155-162,174. |
[10] | 刘逸凡, 王淑青, 庆毅辉, 王晨曦, 兰天泽, 要若天. 基于EfficientDet和双目摄像头的绝缘子缺陷检测[J]. 中国电力, 2021, 54(2): 156-163,196. |
[11] | 黄锐勇, 戴美胜, 郑跃斌, 黄勤琴, 康立烨, 苟先太, 周维超. 电力设备红外图像缺陷检测[J]. 中国电力, 2021, 54(2): 147-155. |
[12] | 曹培, 徐鹏, 贺建明, 高凯, 田昊洋, 季怡萍. 基于多源感知的开关柜绝缘缺陷检测技术[J]. 中国电力, 2021, 54(10): 117-124,133. |
[13] | 代真, 李伟, 郝晓军, 刘红权, 敬尚前. 发电机护环内壁缺陷TOFD检测优化[J]. 中国电力, 2014, 47(3): 65-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||