中国电力 ›› 2023, Vol. 56 ›› Issue (10): 43-52.DOI: 10.11930/j.issn.1004-9649.202304059

• 风电机组及场站主动支撑与运行控制监测关键技术 • 上一篇    下一篇

基于HSCA-YOLOv7的风电机组叶片表面缺陷检测算法

李冰(), 白云山(), 赵宽(), 郭聪彬(), 翟永杰()   

  1. 华北电力大学自动化系,河北 保定 071003
  • 收稿日期:2023-04-19 出版日期:2023-10-28 发布日期:2023-10-31
  • 作者简介:李冰 (1977—),男,副教授,硕士生导师,从事电力视觉研究,E-mail: li_bing_hb@126.com
    白云山 (1998—),男,硕士研究生,从事模式识别与电力视觉研究,E-mail: 220212216009@ncepu.edu.cn
    赵宽 (1998—),男,硕士研究生,从事模式识别与电力视觉研究,E-mail: 220212216027@ncepu.edu.cn
    郭聪彬 (1999—),男,硕士研究生,从事模式识别与电力视觉研究,E-mail: guocongbin@ncepu.edu.cn
    翟永杰 (1972—),男,通信作者,教授,博士生导师,从事电力视觉研究,E-mail: zhaiyongjie@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金联合基金资助项目(可视度受限环境下跨光谱多传感信息融合的机器人语义感知与交互协作,U21A20486);中央高校基本科研业务费专项资金资助(20237488)。

Surface Defect Detection Algorithm for Wind Turbine Blades Based on HSCA-YOLOv7

Bing LI(), Yunshan BAI(), Kuan ZHAO(), Congbin GUO(), Yongjie ZHAI()   

  1. Department of Automation, North China Electric Power University, Baoding 071003, China
  • Received:2023-04-19 Online:2023-10-28 Published:2023-10-31
  • Supported by:
    This work is supported by National Natural Science Foundation of China Joint Fund Project Highlights (Semantic Perception and Interactive Cooperation of Robots in Limited-Visibility Environments with Cross-Spectral Multi-Sensor Information Fusion, No.U21A20486), the Fundamental Research Funds for the Central Universities (No.20237488).

摘要:

叶片是风电机组的关键部件之一,易受到自然环境因素的影响,出现胶衣脱落、裂纹、腐蚀等损伤,影响风力发电效率及风电机组运行安全。针对航拍风电机组叶片图像缺陷尺度不一、定位不准确、检测精度低等问题,提出了一种HSCA-YOLOv7的风电机组叶片缺陷检测算法。首先根据无人机采集的风电机组叶片图像,制作叶片数据集,采用Mosaic、MixUp方法进行数据扩增;然后将不同膨胀率的深度可分离卷积引入改进空间金字塔池化(improved spatial pyramid pooling,ISPP)模块,减少池化操作带来的细节损失;提出混合空间通道注意力(hybrid spatial channel attention,HSCA)机制,捕获全局视觉场景上下文,增大目标特征与环境语义差异,解决航拍叶片图像缺陷尺度不一的问题;采用Focal EIoU损失函数,解决预测框长宽被错误放大的问题,提高模型对叶片缺陷的定位能力。实验结果表明,所提算法的均值平均精度、均值平均召回率分别达到83.64%、71.96%,与YOLOv7基线算法相比分别提高3.37%、5%。

关键词: 风电机组叶片, 缺陷检测, YOLOv7, 注意力机制, Focal EIoU

Abstract:

The blade is one of the key components of the wind turbine, which is vulnerable to the impact of natural environmental factors, resulting in gel coat falling off, cracks, corrosion, and other damage and thus affecting the efficiency of wind power generation and the safety of wind turbine operation. A defect detection algorithm for wind turbine blades based on HSCA-YOLOv7 is proposed to address the issues of inconsistent defect scale, inaccurate positioning, and low detection accuracy in wind turbine blade images by aerial photography. Firstly, based on the images of wind turbine blades collected by drones, a dataset of blades is created, and Mosaic and MixUp methods are used for data amplification. Then, deep separable convolutions with different expansion rates are introduced into the improved spatial pyramid pooling (ISPP) module to reduce the loss of details caused by pooling operations. Hybrid spatial channel attention (HSCA) is proposed to capture the global visual scene context, increase the semantic difference between target features and the environment, and solve the problem of inconsistent defect scales in blade images. The focal EIoU loss function is used to solve the problem that the length and width of the prediction box are wrongly amplified and improve the positioning ability of the model for blade defects. The experimental results show that the mAP and mAR of the proposed algorithm reach 83.64% and 71.96%, respectively, which are 3.37% and 5% higher than the YOLOv7 baseline algorithm.

Key words: wind turbine blades, defect detection, YOLOv7, attention mechanism, Focal EIoU