[1] 王淼, 杜毅, 张忠瑞. 无人机辅助巡视及绝缘子缺陷图像识别研究[J]. 电子测量与仪器学报, 2015, 29(12): 1862-1869 WANG Miao, DU Yi, ZHANG Zhongrui. Study on power transmission lines inspection using unmanned aerial vehicle and image recognition of insulator defect[J]. Journal of Electronic Measurement and Instrumentation, 2015, 29(12): 1862-1869 [2] 单成, 吴洪潭, 石成龙, 等. 图像处理中的绝缘子缺陷检测方法[J]. 中国计量学院学报, 2010, 21(4): 297-300, 304 SHAN Cheng, WU Hongtan, SHI Chenglong, et al. Defect detection method on insulators by image processing[J]. Journal of China University of Metrology, 2010, 21(4): 297-300, 304 [3] 唐波, 覃乔, 黄力. 基于色彩模型和纹理特征的输电线路绝缘子串航拍图像识别[J]. 电力科学与技术学报, 2020, 35(4): 13-19 TANG Bo, QIN Qiao, HUANG Li. Transmission line aerial image recognition of insulator strings based on color model and texture features[J]. Journal of Electric Power Science and Technology, 2020, 35(4): 13-19 [4] ZHAO Z B, XU G Z, QI Y C, et al. Multi-patch deep features for power line insulator status classification from aerial images[C]//2016 International Joint Conference on Neural Networks (IJCNN). Vancouver, BC, Canada. IEEE, 2016: 3187-3194. [5] 虢韬, 杨恒, 时磊, 等. 基于Faster RCNN的绝缘子自爆缺陷识别[J]. 电瓷避雷器, 2019(3): 183-189 GUO Tao, YANG Heng, SHI Lei, et al. Self-explosion defect identification of insulator based on faster rcnn[J]. Insulators and Surge Arresters, 2019(3): 183-189 [6] 颜宏文, 陈金鑫. 基于改进YOLOv3的绝缘子串定位与状态识别方法[J]. 高电压技术, 2020, 46(2): 423-432 YAN Hongwen, CHEN Jinxin. Insulator string positioning and state recognition method based on improved YOLOv3 algorithm[J]. High Voltage Engineering, 2020, 46(2): 423-432 [7] 高金峰, 吕易航. 航拍图像中绝缘子串的识别与分割方法研究[J]. 郑州大学学报(理学版), 2019, 51(4): 16-22 GAO Jinfeng, LV Yihang. Research on recognition and segmentation of insulator strings in aerial images[J]. Journal of Zhengzhou University (Natural Science Edition), 2019, 51(4): 16-22 [8] 吴涛, 王伟斌, 于力, 等. 轻量级YOLOV3的绝缘子缺陷检测方法[J]. 计算机工程, 2019, 45(8): 275-280 WU Tao, WANG Weibin, YU Li, et al. Insulator defect detection method for lightweight YOLOV3[J]. Computer Engineering, 2019, 45(8): 275-280 [9] TAO X, ZHANG D P, WANG Z H, et al. Detection of power line insulator defects using aerial images analyzed with convolutional neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(4): 1486-1498. [10] 姜云土, 韩军, 丁建, 等. 基于多特征融合的玻璃绝缘子识别及自爆缺陷的诊断[J]. 中国电力, 2017, 50(5): 52-58, 64 JIANG Yuntu, HAN Jun, DING Jian, et al. The identification and diagnosis of self-blast defects of glass insulators based on multi-feature fusion[J]. Electric Power, 2017, 50(5): 52-58, 64 [11] 张焕坤, 李军毅, 张斌. 基于改进型YOLO v3的绝缘子异物检测方法[J]. 中国电力, 2020, 53(2): 49-55 ZHANG Huankun, LI Junyi, ZHANG Bin. Foreign object detection on insulators based on improved YOLO v3[J]. Electric Power, 2020, 53(2): 49-55 [12] JIANG H, QIU X J, CHEN J, et al. Insulator fault detection in aerial images based on ensemble learning with multi-level perception[J]. IEEE Access, 2019(7): 61797-61810. [13] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. [14] KRASIN I, DUERIG T, ALLDRIN N, et al. Openimages: a public dataset for large-scale multi-label and multi-class image classification[J]. Dataset available from https://github.com/openimages, 2017, 2(3): 2-3. [15] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[J]. Computer Vision - ECCV 2014, 2014: 740-755. [16] PRATES R M, CRUZ R, MAROTTA A P, et al. Insulator visual non-conformity detection in overhead power distribution lines using deep learning[J]. Computers & Electrical Engineering, 2019, 78: 343-355. [17] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[J]. Computer Vision - ECCV 2016, 2016: 21-37. [18] HE K M, GKIOXARI G, DOLLÁR P, et al. Mask r-cnn[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy. IEEE, 2017: 2980-2988. [19] TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL]. 2019: arXiv: 1905.11946[cs.LG]. https://arxiv.org/abs/1905.11946. [20] ZOPH B, CUBUK E D, GHIASI G, et al. Learning data augmentation strategies for object detection[EB/OL]. 2019: arXiv: 1906.11172[cs.CV]. https://arxiv.org/abs/1906.11172.
|