[1] 苗友忠, 李顺昕, 雷为民, 等. 考虑用户负荷类型的含分布式电源的配电网可靠性评估[J]. 电力科学与技术学报, 2020, 35(2): 93–99 MIAO Youzhong, LI Shunxin, LEI Weimin, et al. Reliability evaluation of distribution network with distributed generation considering customer sectors[J]. Journal of Electric Power Science and Technology, 2020, 35(2): 93–99 [2] 曾囿钧, 肖先勇, 徐方维, 等. 基于CNN-BiGRU-NN模型的短期负荷预测方法[J]. 中国电力, 2021, 54(9): 17–23 ZENG Youjun, XIAO Xianyong, XU Fangwei, et al. A short-term load forecasting method based on CNN-BiGRU-NN model[J]. Electric Power, 2021, 54(9): 17–23 [3] 李富鹏, 沈秋英, 王森, 等. 基于大数据和多因素组合分析的单元制配电网精细化负荷预测[J]. 智慧电力, 2020, 48(1): 55–62 LI Fupeng, SHEN Qiuying, WANG Sen, et al. Refined load forecasting method for unit distribution network based on big data and multiple factors[J]. Smart Power, 2020, 48(1): 55–62 [4] 徐冰涵, 孙云莲, 易仕敏, 等. 考虑分时电价的居民用户短期用电量分类预测及修正方法[J]. 电力系统保护与控制, 2020, 48(6): 144–151 XU Binghan, SUN Yunlian, YI Shimin, et al. Classified short-term electricity consumption forecasting and correcting method for residential users considering time-of-use electricity price[J]. Power System Protection and Control, 2020, 48(6): 144–151 [5] 吴亚雄, 高崇, 曹华珍, 等. 基于灰狼优化聚类算法的日负荷曲线聚类分析[J]. 电力系统保护与控制, 2020, 48(6): 68–76 WU Yaxiong, GAO Chong, CAO Huazhen, et al. Clustering analysis of daily load curves based on GWO algorithm[J]. Power System Protection and Control, 2020, 48(6): 68–76 [6] 钟小强, 陈程, 董雨, 等. 基于SOM神经网络的公变用户日负荷特征曲线提取分析[J]. 中国电力教育, 2014(33): 204–206 [7] MAJI P, PAL S K. Rough set based generalized fuzzy C -means algorithm and quantitative indices[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2007, 37(6): 1529–1540. [8] 王海起, 张腾, 彭佳琦, 等. 空间加权距离的GIS数据Fuzzy C-means聚类方法与应用分析[J]. 地球信息科学学报, 2013, 15(6): 854–861 WANG Haiqi, ZHANG Teng, PENG Jiaqi, et al. Fuzzy C-means clustering for GIS data based on spatial weighted distance[J]. Journal of Geo-Information Science, 2013, 15(6): 854–861 [9] 朱俚治. 一种加权欧氏距离聚类算法的改进[J]. 计算机与数字工程, 2016, 44(3): 421–424 ZHU Lizhi. Improvement of weighted euclidean distance clustering algorithm[J]. Computer & Digital Engineering, 2016, 44(3): 421–424 [10] 陆海青, 葛洪伟. 自适应灰度加权的鲁棒模糊C均值图像分割[J]. 智能系统学报, 2018, 13(4): 584–593 LU Haiqing, GE Hongwei. Adaptive gray-weighted robust fuzzy C-means algorithm for image segmentation[J]. CAAI Transactions on Intelligent Systems, 2018, 13(4): 584–593 [11] WU Xiaohong, WU Bin, SUN Jun, et al. A possibilistic fuzzy C-means clustering algorithm[J]. International Journal of Food Engineering, 2015, 13(1): 517–30. [12] 赵嘉玉, 韩肖清, 梁琛, 等. 隶属函数与欧氏距离相结合的配电网优化重构[J]. 电网技术, 2017, 41(11): 3624–3631 ZHAO Jiayu, HAN Xiaoqing, LIANG Chen, et al. Optimal distribution network reconfiguration combining fuzzy membership with euclidean distance[J]. Power System Technology, 2017, 41(11): 3624–3631 [13] 贾亚飞, 兰志堃, 王凌霄, 等. 基于云平台下的并行VMD算法[J]. 华北电力大学学报(自然科学版), 2020, 47(2): 38–46 JIA Yafei, LAN Zhikun, WANG Lingxiao, et al. Parallel variational mode decomposition based on cloud platform[J]. Journal of North China Electric Power University (Natural Science Edition), 2020, 47(2): 38–46 [14] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531–544. [15] 邵宁, 陈万培, 陈俊晟. 基于维纳滤波器的抗多址干扰盲检测方法[J]. 扬州大学学报(自然科学版), 2010, 13(1): 47–51 SHAO Ning, CHEN Wanpei, CHEN Junsheng. The blind detection method of anti-MAI based on Wiener filter[J]. Journal of Yangzhou University (Natural Science Edition), 2010, 13(1): 47–51 [16] HONIG M L, GOLDSTEIN J S. Adaptive reduced-rank interference suppression based on the multistage Wiener filter[J]. IEEE Transactions on Communications, 2002, 50(6): 986–994. [17] 许子非, 李春, 张万福, 等. 基于自适应变分模态分解及多重分形谱的风力机轴承故障分析[J]. 热能动力工程, 2019, 34(9): 181–190 XU Zifei, LI Chun, ZHANG Wanfu, et al. Multifractal spectrum analysis of bearing failure of wind turbine based on adaptive variational modal decomposition[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(9): 181–190 [18] GHADIMI E, TEIXEIRA A, SHAMES I, et al. Optimal parameter selection for the alternating direction method of multipliers (ADMM): quadratic problems[J]. IEEE Transactions on Automatic Control, 2015, 60(3): 644–658. [19] 张淑清, 宿新爽, 陈荣飞, 等. 基于变分模态分解和FABP的短期电力负荷预测[J]. 仪器仪表学报, 2018, 39(4): 67–73 ZHANG Shuqing, SU Xinshuang, CHEN Rongfei, et al. Short-term load forecasting based on the VMD and FABP[J]. Chinese Journal of Scientific Instrument, 2018, 39(4): 67–73 [20] 崔立卿, 贺伟军, 田晶, 等. 基于K均值聚类算法的大客户用电行为分析[J]. 浙江电力, 2017, 36(12): 47–52 CUI Liqing, HE Weijun, TIAN Jing, et al. Analysis on power consumption behavior of large customers based on K-means clustering algorithm[J]. Zhejiang Electric Power, 2017, 36(12): 47–52 [21] XIE X L, BENI G. A validity measure for fuzzy clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(8): 841–847. [22] 于剑, 程乾生. 关于聚类有效性函数FP(u, c)的研究[J]. 电子学报, 2001, 29(7): 899–901 YU Jian, CHENG Qiansheng. On cluster validity function FP(u, c)[J]. Acta Electronica Sinica, 2001, 29(7): 899–901 [23] 范九伦, 吴成茂. 基于模糊熵的聚类有效性函数[J]. 模式识别与人工智能, 2001, 14(4): 390–394 FAN Jiulun, WU Chengmao. Clustering validity function based on fuzzy entropy[J]. Pattern Recognition and Artificial Intelligence, 2001, 14(4): 390–394 [24] 范九伦, 吴成茂. 可能性划分系数和模糊变差相结合的聚类有效性函数[J]. 电子与信息学报, 2002, 24(8): 1017–1021 FAN Jiulun, WU Chengmao. Clustering validity function combining possibility division coefficient and fuzzy variation[J]. Journal of Electronics and Information Technology, 2002, 24(8): 1017–1021 [25] 黄海新, 孔畅, 于海斌, 等. 自适应特征熵权模糊C均值聚类算法的研究[J]. 系统工程理论与实践, 2016, 36(1): 219–223 HUANG Haixin, KONG Chang, YU Haibin, et al. Research on adaptive entropy weight fuzzy c-means clustering algorithm[J]. Systems Engineering-Theory & Practice, 2016, 36(1): 219–223
|