[1] 杨智伟, 刘灏, 毕天姝, 等. 基于长短期记忆网络的PMU不良数据检测方法[J]. 电力系统保护与控制, 2020, 48(7): 1–9 YANG Zhiwei, LIU Hao, BI Tianshu, et al. PMU bad data detection method based on long short-term memory network[J]. Power System Protection and Control, 2020, 48(7): 1–9 [2] 李志豪, 陈皓勇. 基于PMU量测的配电网稀疏估计[J]. 电力系统保护与控制, 2020, 48(23): 11–20 LI Zhihao, CHEN Haoyong. Sparse estimation of a distribution network based on PMU measurement[J]. Power System Protection and Control, 2020, 48(23): 11–20 [3] 黄潇潇, 杨韬, 郑骁麟, 等. 基于PMU量测信息的短线路同杆并架双回线参数辨识[J]. 中国电力, 2020, 53(7): 141–148 HUANG Xiaoxiao, YANG Tao, ZHENG Xiaolin, et al. Parameter identification of short parallel double-circuit lines based on PMU measurements[J]. Electric Power, 2020, 53(7): 141–148 [4] 郑楚韬, 孔祥轩, 李斌, 等. 一种新型配电网同步量测装置的研制[J]. 智慧电力, 2020, 48(2): 65–70, 77 ZHENG Chutao, KONG Xiangxuan, LI Bin, et al. Development of A new synchronous measurement unit for distribution network[J]. Smart Power, 2020, 48(2): 65–70, 77 [5] 连鸿松, 张少涵, 张逸. 基于自适应容积卡尔曼滤波算法的电力系统动态谐波状态估计[J]. 智慧电力, 2020, 48(6): 14–19, 53 LIAN Hongsong, ZHANG Shaohan, ZHANG Yi. Dynamic harmonic state estimation of power system based on adaptive volumetric Kalman filter[J]. Smart Power, 2020, 48(6): 14–19, 53 [6] 徐全, 袁智勇, 雷金勇, 等. 基于5G的高精度同步相量测量及测试方法[J]. 南方电网技术, 2021, 15(7): 76–80 XU Quan, YUAN Zhiyong, LEI Jinyong, et al. High precision synchronous phasor measurement and test method based on 5th generation mobile networks[J]. Southern Power System Technology, 2021, 15(7): 76–80 [7] 高文焘. 基于μPMU的主动配电网故障定位技术研究[D]. 北京: 北京理工大学, 2016. GAO Wentao. Research on μPMU based fault location technologies for active distribution network[D]. Beijing: Beijing Institute of Technology, 2016. [8] 管廷龙, 薛永端, 徐丙垠. 基于故障相电压极化量的谐振接地系统高阻故障方向检测方法[J]. 电力系统保护与控制, 2020, 48(23): 73–81 GUAN Tinglong, XUE Yongduan, XU Bingyin. Method for detecting high-impedance fault direction in a resonant grounding system based on voltage polarization of the fault phase[J]. Power System Protection and Control, 2020, 48(23): 73–81 [9] 许寅, 王思家, 吴翔宇, 等. 基于同步相量测量的配电网孤岛多源协同控制方法[J]. 电网技术, 2019, 43(3): 872–880 XU Yin, WANG Sijia, WU Xiangyu, et al. Multi-source coordinated control method based on PMU for islanded distribution network[J]. Power System Technology, 2019, 43(3): 872–880 [10] 王成斌, 贠志皓, 张恒旭, 等. 基于微型PMU的配电网多分支架空线路参数无关故障定位算法[J]. 电网技术, 2019, 43(9): 3202–3211 WANG Chengbin, YUN Zhihao, ZHANG Hengxu, et al. Parameter-free fault location algorithm for multi-terminal overhead transmission line of distribution network based on μMPMU[J]. Power System Technology, 2019, 43(9): 3202–3211 [11] LIU Y L. A US-wide power systems frequency monitoring network[C]//2006 IEEE PES Power Systems Conference and Exposition. Atlanta, GA, USA. IEEE, 2006: 159-166. [12] 张恒旭, 靳宗帅, 刘玉田. 轻型广域测量系统及其在中国的应用[J]. 电力系统自动化, 2014, 38(22): 85–90 ZHANG Hengxu, JIN Zongshuai, LIU Yutian. Wide-area measurement system light and its application in China[J]. Automation of Electric Power Systems, 2014, 38(22): 85–90 [13] 吴智利, 赵庆生, 陈惠英, 等. 低频采样下基于卡尔曼滤波的同步相量测量算法的研究[J]. 电力系统保护与控制, 2014, 42(15): 94–99 WU Zhili, ZHAO Qingsheng, CHEN Huiying, et al. A Kalman-filter based phasor measurement algorithm under low sampling frequency[J]. Power System Protection and Control, 2014, 42(15): 94–99 [14] 汪芙平, 靳夏宁, 王赞基. 实现动态相量测量的FIR数字滤波器最优设计[J]. 中国电机工程学报, 2014, 34(15): 2388–2395 WANG Fuping, JIN Xianing, WANG Zanji. Optimal design of FIR digital filters for dynamic phasor measurement[J]. Proceedings of the CSEE, 2014, 34(15): 2388–2395 [15] 李建, 谢小荣, 韩英铎. 同步相量测量的若干关键问题[J]. 电力系统自动化, 2005, 29(1): 45–48,76 LI Jian, XIE Xiaorong, HAN Yingduo. Some key issues of synchrophasor measurement[J]. Automation of Electric Power Systems, 2005, 29(1): 45–48,76 [16] 王茂海, 孙元章. 基于DFT的电力系统相量及功率测量新算法[J]. 电力系统自动化, 2005, 29(2): 20–24 WANG Maohai, SUN Yuanzhang. A DFT-based method for phasor and power measurement in power systems[J]. Automation of Electric Power Systems, 2005, 29(2): 20–24 [17] 闫常友, 张涛, 杨奇逊. 基于DFT的非同步采样情况下相量测量误差研究综述[J]. 继电器, 2004, 32(10): 80–84 YAN Changyou, ZHANG Tao, YANG Qixun. Survey of phasor measurement errors on DFT-based non-synchronous sampling[J]. Relay, 2004, 32(10): 80–84 [18] 徐全, 陆超, 刘映尚, 等. 基于泰勒级数和离散傅里叶变换的综合自适应相量算法[J]. 电力系统自动化, 2016, 40(19): 37–43 XU Quan, LU Chao, LIU Yingshang, et al. Comprehensive adaptive phasor algorithm based on Taylor series and discrete Fourier transform[J]. Automation of Electric Power Systems, 2016, 40(19): 37–43 [19] 王印峰, 陆超, 李依泽, 等. 一种配电网高精度快响应同步相量算法及其实现[J]. 电网技术, 2019, 43(3): 753–761 WANG Yinfeng, LU Chao, LI Yize, et al. A high-accuracy and fast-response synchrophasor algorithm and its implementation for distribution network[J]. Power System Technology, 2019, 43(3): 753–761 [20] 蔡云峰, 汤飞, 吕洋, 等. 一种适用于配电网的同步相量测量改进算法[J]. 电力系统自动化, 2019, 43(21): 141–147 CAI Yunfeng, TANG Fei, LYU Yang, et al. An improved algorithm of synchronous phase measurement available for distribution network[J]. Automation of Electric Power Systems, 2019, 43(21): 141–147 [21] 常乃超, 刘思旭, 余高旺, 等. 动态条件下同步相量测量装置的数字滤波器及计算优化[J]. 电力系统自动化, 2017, 41(20): 92–96 CHANG Naichao, LIU Sixu, YU Gaowang, et al. Digital filter and computational optimization of synchronized phasor measurement unit under dynamic conditions[J]. Automation of Electric Power Systems, 2017, 41(20): 92–96 [22] 池源, 唐文左, 刘国平, 等. 基于频域滤波的间谐波在线检测算法[J]. 中国电力, 2014, 47(4): 86–91 CHI Yuan, TANG Wenzuo, LIU Guoping, et al. On-line detection algorithm for interharmonics based on spectrum domain filtering[J]. Electric Power, 2014, 47(4): 86–91 [23] 陈子珍, 夏冰冰, 阎威武. 基于改进加窗插值FFT的高精度谐波与间谐波检测算法[J]. 中国电力, 2015, 48(9): 73–79 CHEN Zizhen, XIA Bingbing, YAN Weiwu. Precise algorithms for harmonic and inter-harmonic detection based on improved window-interpolated FFT method[J]. Electric Power, 2015, 48(9): 73–79 [24] 王保帅, 肖霞. 一种用于谐波分析的高精度多谱线插值算法[J]. 电工技术学报, 2018, 33(3): 553–562 WANG Baoshuai, XIAO Xia. A high accuracy multi-spectrum-line interpolation algorithm for harmonic analysis[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 553–562 [25] 张伏生, 耿中行, 葛耀中. 电力系统谐波分析的高精度FFT算法[J]. 中国电机工程学报, 1999, 19(3): 63–66 ZHANG Fusheng, GENG Zhongxing, GE Yaozhong. Fft algorithm with high accuracy for harmonic analysis in power system[J]. Proceedings of the CSEE, 1999, 19(3): 63–66
|