中国电力 ›› 2016, Vol. 49 ›› Issue (11): 46-50.DOI: 10.11930/j.issn.1004-9649.2016.11.046.05

• 电网 • 上一篇    下一篇

基于灰色支持向量机的输电线路覆冰厚度预测模型

马小敏1, 高剑2, 吴驰1, 何锐2, 龚奕宇1, 李熠2, 吴天宝1   

  1. 1. 国网四川省电力公司电力科学研究院,四川 成都 610072;
    2. 国网四川省电力公司,四川 成都 610041
  • 收稿日期:2016-09-02 出版日期:2016-11-10 发布日期:2016-12-09
  • 作者简介:马小敏(1988—),男,陕西南郑人,工程师,从事电气设备状态监测及故障诊断、输电线路防冰减灾技术研究工作。E-mail: maxiaomin913@163.com

Prediction Model for Icing Thickness of Power Transmission Line Based on Grey Support Vector Machine

MA Xiaomin1, GAO Jian2, WU Chi1, HE Rui2, GONG Yiyu1, LI Yi2, WU Tianbao1   

  1. 1. State Grid Sichuan Electric Power Research Institute, Chengdu 610072, China;
    2. State Grid Sichuan Electric Power Company, Chengdu 610041, China
  • Received:2016-09-02 Online:2016-11-10 Published:2016-12-09

摘要: 为了降低输电线路覆冰事故对电网安全造成的严重影响,对输电线路覆冰厚度进行预测将能够有效地指导电网抗冰工作。提出了基于灰色支持向量机的输电线路覆冰厚度短期预测模型,分析了样本中脏数据的剔除及数据预处理方法,通过模型预测值与实测数据的对比验证了该模型的准确性和适用性,根据模型预测的线路最大覆冰厚度值对现场观冰、冰情预警以及开展交直流融冰提供策略指导。将该模型与传统的支持向量机和广义回归神经网络覆冰预测模型进行了对比,结果表明,该模型平均误差为0.325 mm,平均绝对百分误差仅为2.61%,适用于输电线路覆冰厚度短期预测。在易覆冰地区,应用该预测模型能够更好地指导输电线路抗冰工作。

关键词: 覆冰, 输电线路, 短期预测, 灰色模型, 支持向量机模型, 在线监测

Abstract: In order to reduce the impact of icing accidents on transmission lines, prediction of icing thickness on transmission lines is very effective in anti-icing work of power grid. A short-term prediction model based on grey support vector machine for icing thickness of transmission lines is proposed. The methods of dirty data elimination and data preprocessing are analyzed. The accuracy and applicability of proposed model are verified by comparison between model predictions and measured data. Predicted maximum ice thickness can provide guidance on monitoring icing condition, early warning and AC/DC ice melting work. Compared with support vector machine (SVM) and generalized regression neural network prediction model, the proposed method has average error of 0.325 mm, and average absolute error of 2.61%, which is suitable for short-term prediction of icing thickness of transmission line. The application of the prediction model can guide the transmission line ice-resistant work in the ice area.

Key words: icing, transmission line, short-term prediction, grey model, support vector machine, on-line monitoring

中图分类号: