中国电力 ›› 2024, Vol. 57 ›› Issue (4): 151-161.DOI: 10.11930/j.issn.1004-9649.202303122
收稿日期:
2023-03-29
接受日期:
2024-01-02
出版日期:
2024-04-28
发布日期:
2024-04-26
作者简介:
赵耀(1987—),男,通信作者,博士,副教授,从事配电网态势感知、新能源发电、电力设备故障诊断研究,Email:nihaozhaoyao@163.com基金资助:
Yao ZHAO1(), Yongjiang CHEN1(
), Kunhua JI2(
), Yun WANG2(
)
Received:
2023-03-29
Accepted:
2024-01-02
Online:
2024-04-28
Published:
2024-04-26
Supported by:
摘要:
明确配电网结构是配电网最优潮流、安全评估、网络重建、故障定位的基础。针对现有配电网拓扑识别方法缺乏结合现有网络结构参数和潮流信息,仅通过量测数据来进行拓扑识别效率低的问题,提出一种基于有限关键节点及Wasserstein距离的配电网拓扑识别方法。首先,利用子空间扰动模型证明配网拓扑变化时,可以利用有限的关键节点来进行拓扑识别,基于熵值法的混合K-Shell算法引入影响度概念,通过影响度与节点电气距离得出节点的重要度,确定配电网拓扑结构中的关键节点。其次,基于密度的噪声应用聚类算法通过电压、电流、有功、无功等4个特征来进行节点的聚类,将其他节点与关键节点进行类别归属,再结合Wasserstein距离得出节点间的连接关系从而得出配电网的拓扑结构。最后,通过IEEE 33节点算例和某小区实例,验证该方法的有效性。该方法极大地提高配电网拓扑识别效率与正确率,实现了配网拓扑结构的动态识别。
赵耀, 陈永江, 纪坤华, 王云. 基于有限关键节点及Wasserstein距离的配网拓扑识别[J]. 中国电力, 2024, 57(4): 151-161.
Yao ZHAO, Yongjiang CHEN, Kunhua JI, Yun WANG. Distribution Network Topology Identification Based on Finite Key Nodes and Wasserstein Distance[J]. Electric Power, 2024, 57(4): 151-161.
拓扑 结构 | 关键节点 | 识别结果 | ||
a) | 1, 4, 5, 7, 9, 10, 13, 14, 15, 20, 21, 22, 25, 26, 30 | 1-2, 2-3, 3-4, 4-5, 4-7, 5-6, 7-8, 8-9, 9-10, 10-11, 11-12, 9-13, 13-14, 14-15, 14-20, 15-16, 16-17, 17-18, 18-19, 19-29, 20-21, 21-22, 21-25, 22-23, 23-24, 25-26, 25-30, 26-27, 27-28, 28-29, 30-31, 31-32, 32-33 | ||
b) | 1, 4, 5, 6, 14, 15, 18, 20, 23, 24, 25 | 1-2, 2-3, 3-4, 4-5, 4-6, 6-7, 7-8, 8-9, 9-13, 13-14, 14-15, 14-18, 15-16, 16-17, 18-19, 19-23, 23-20, 23-24, 23-25, 20-21, 21-22, 24-26, 26-27, 27-28, 28-29, 25-30, 30-31, 31-32, 32-33 |
表 1 关键节点的分布及拓扑识别结果
Table 1 The distribution of key nodes and the topology identification results
拓扑 结构 | 关键节点 | 识别结果 | ||
a) | 1, 4, 5, 7, 9, 10, 13, 14, 15, 20, 21, 22, 25, 26, 30 | 1-2, 2-3, 3-4, 4-5, 4-7, 5-6, 7-8, 8-9, 9-10, 10-11, 11-12, 9-13, 13-14, 14-15, 14-20, 15-16, 16-17, 17-18, 18-19, 19-29, 20-21, 21-22, 21-25, 22-23, 23-24, 25-26, 25-30, 26-27, 27-28, 28-29, 30-31, 31-32, 32-33 | ||
b) | 1, 4, 5, 6, 14, 15, 18, 20, 23, 24, 25 | 1-2, 2-3, 3-4, 4-5, 4-6, 6-7, 7-8, 8-9, 9-13, 13-14, 14-15, 14-18, 15-16, 16-17, 18-19, 19-23, 23-20, 23-24, 23-25, 20-21, 21-22, 24-26, 26-27, 27-28, 28-29, 25-30, 30-31, 31-32, 32-33 |
时刻 | U1 | I1 | P1 | U2 | I2 | P2 | ||||||
00:00 | 229.8 | 0.933 | 0.196 | 226.9 | 1.691 | 0.360 | ||||||
01:00 | 229.5 | 0.849 | 0.180 | 226.9 | 1.424 | 0.303 | ||||||
02:00 | 229.6 | 1.016 | 0.215 | 226.4 | 1.805 | 0.375 | ||||||
03:00 | 228.5 | 1.046 | 0.220 | 225.2 | 1.655 | 0.340 | ||||||
··· | ··· | ··· | ··· | ··· | ··· | ··· | ||||||
21:00 | 226.8 | 1.626 | 0.336 | 221.6 | 2.355 | 0.478 | ||||||
22:00 | 226.7 | 2.796 | 0.582 | 218.0 | 5.951 | 1.206 | ||||||
23:00 | 227.6 | 1.845 | 0.378 | 221.6 | 2.384 | 0.484 |
表 2 部分用户电表某天的量测数据
Table 2 The measurement data of some users' electricity meters in a day
时刻 | U1 | I1 | P1 | U2 | I2 | P2 | ||||||
00:00 | 229.8 | 0.933 | 0.196 | 226.9 | 1.691 | 0.360 | ||||||
01:00 | 229.5 | 0.849 | 0.180 | 226.9 | 1.424 | 0.303 | ||||||
02:00 | 229.6 | 1.016 | 0.215 | 226.4 | 1.805 | 0.375 | ||||||
03:00 | 228.5 | 1.046 | 0.220 | 225.2 | 1.655 | 0.340 | ||||||
··· | ··· | ··· | ··· | ··· | ··· | ··· | ||||||
21:00 | 226.8 | 1.626 | 0.336 | 221.6 | 2.355 | 0.478 | ||||||
22:00 | 226.7 | 2.796 | 0.582 | 218.0 | 5.951 | 1.206 | ||||||
23:00 | 227.6 | 1.845 | 0.378 | 221.6 | 2.384 | 0.484 |
用户 | U间Wasserstein距离值 | I间Wasserstein距离值 | P间Wasserstein距离值 | |||||||||||||||
表箱1 | 表箱2 | 表箱3 | 表箱1 | 表箱2 | 表箱3 | 表箱1 | 表箱2 | 表箱3 | ||||||||||
1 | 0.0033 | 0.2046 | 0.2013 | 0.0135 | 0.1493 | 0.1293 | 0.0101 | 0.1577 | 0.1571 | |||||||||
2 | 0.0202 | 0.2100 | 0.2068 | 0.0129 | 0.1680 | 0.1347 | 0.0145 | 0.1593 | 0.1629 | |||||||||
3 | 0.0324 | 0.2130 | 0.1734 | 0.0173 | 0.1669 | 0.1377 | 0.0262 | 0.1648 | 0.1648 | |||||||||
4 | 0.0448 | 0.1766 | 0.1739 | 0.0106 | 0.1758 | 0.1382 | 0.0208 | 0.1677 | 0.1677 | |||||||||
5 | 0.1085 | 0.0170 | 0.1859 | 0.1706 | 0.0203 | 0.1139 | 0.1287 | 0.0116 | 0.1682 | |||||||||
6 | 0.1130 | 0.0292 | 0.1760 | 0.1722 | 0.0128 | 0.1251 | 0.1341 | 0.0108 | 0.1318 | |||||||||
7 | 0.1097 | 0.0415 | 0.1754 | 0.1805 | 0.0075 | 0.1270 | 0.1370 | 0.0233 | 0.1439 | |||||||||
8 | 0.1213 | 0.0721 | 0.1779 | 0.1811 | 0.0027 | 0.1329 | 0.1376 | 0.0205 | 0.1340 | |||||||||
9 | 0.1605 | 0.1771 | 0.0246 | 0.1442 | 0.1370 | 0.0045 | 0.1358 | 0.1682 | 0.0102 | |||||||||
10 | 0.1315 | 0.1892 | 0.0251 | 0.1447 | 0.1576 | 0.0012 | 0.1245 | 0.1318 | 0.0117 | |||||||||
11 | 0.1330 | 0.1793 | 0.0128 | 0.1568 | 0.1556 | 0.0230 | 0.1264 | 0.1439 | 0.0126 | |||||||||
12 | 0.2030 | 0.1787 | 0.0157 | 0.1468 | 0.1635 | 0.0246 | 0.1323 | 0.1551 | 0.0191 |
表 3 用户与表箱间的Wasserstein距离值
Table 3 The Wasserstein distance between the user and the watch box
用户 | U间Wasserstein距离值 | I间Wasserstein距离值 | P间Wasserstein距离值 | |||||||||||||||
表箱1 | 表箱2 | 表箱3 | 表箱1 | 表箱2 | 表箱3 | 表箱1 | 表箱2 | 表箱3 | ||||||||||
1 | 0.0033 | 0.2046 | 0.2013 | 0.0135 | 0.1493 | 0.1293 | 0.0101 | 0.1577 | 0.1571 | |||||||||
2 | 0.0202 | 0.2100 | 0.2068 | 0.0129 | 0.1680 | 0.1347 | 0.0145 | 0.1593 | 0.1629 | |||||||||
3 | 0.0324 | 0.2130 | 0.1734 | 0.0173 | 0.1669 | 0.1377 | 0.0262 | 0.1648 | 0.1648 | |||||||||
4 | 0.0448 | 0.1766 | 0.1739 | 0.0106 | 0.1758 | 0.1382 | 0.0208 | 0.1677 | 0.1677 | |||||||||
5 | 0.1085 | 0.0170 | 0.1859 | 0.1706 | 0.0203 | 0.1139 | 0.1287 | 0.0116 | 0.1682 | |||||||||
6 | 0.1130 | 0.0292 | 0.1760 | 0.1722 | 0.0128 | 0.1251 | 0.1341 | 0.0108 | 0.1318 | |||||||||
7 | 0.1097 | 0.0415 | 0.1754 | 0.1805 | 0.0075 | 0.1270 | 0.1370 | 0.0233 | 0.1439 | |||||||||
8 | 0.1213 | 0.0721 | 0.1779 | 0.1811 | 0.0027 | 0.1329 | 0.1376 | 0.0205 | 0.1340 | |||||||||
9 | 0.1605 | 0.1771 | 0.0246 | 0.1442 | 0.1370 | 0.0045 | 0.1358 | 0.1682 | 0.0102 | |||||||||
10 | 0.1315 | 0.1892 | 0.0251 | 0.1447 | 0.1576 | 0.0012 | 0.1245 | 0.1318 | 0.0117 | |||||||||
11 | 0.1330 | 0.1793 | 0.0128 | 0.1568 | 0.1556 | 0.0230 | 0.1264 | 0.1439 | 0.0126 | |||||||||
12 | 0.2030 | 0.1787 | 0.0157 | 0.1468 | 0.1635 | 0.0246 | 0.1323 | 0.1551 | 0.0191 |
RSN/dB | 拓扑识别准确率/% | |||||
皮尔逊 相关系数法 | T型灰色 关联法 | Wasserstein 距离值法 | ||||
6 | 75.00 | 83.33 | 91.67 | |||
2 | 58.33 | 75.00 | 83.33 | |||
0 | 50.00 | 66.67 | 75.00 | |||
–2 | 41.67 | 58.33 | 66.67 |
表 4 加入噪声拓扑识别结果对比
Table 4 Comparison of the topology identification results with noise added
RSN/dB | 拓扑识别准确率/% | |||||
皮尔逊 相关系数法 | T型灰色 关联法 | Wasserstein 距离值法 | ||||
6 | 75.00 | 83.33 | 91.67 | |||
2 | 58.33 | 75.00 | 83.33 | |||
0 | 50.00 | 66.67 | 75.00 | |||
–2 | 41.67 | 58.33 | 66.67 |
1 | 王成山, 李鹏. 分布式发电、微网与智能配电网的发展与挑战[J]. 电力系统自动化, 2010, 34 (2): 10- 14, 23. |
WANG Chengshan, LI Peng. Development and challenges of distributed generation, the micro-grid and smart distribution system[J]. Automation of Electric Power Systems, 2010, 34 (2): 10- 14, 23. | |
2 |
赵一男, 宋斌, 钱振宇, 等. 未来配电网的分布式形态及规划方法[J]. 中国电力, 2022, 55 (4): 70- 77.
DOI |
ZHAO Yinan, SONG Bin, QIAN Zhenyu, et al. Dispatching architecture and planning method of future distribution network[J]. Electric Power, 2022, 55 (4): 70- 77.
DOI |
|
3 |
ALVAREZ-HERAULT M C, PICAULT D, CAIRE R, et al. A novel hybrid network architecture to increase DG insertion in electrical distribution systems[J]. IEEE Transactions on Power Systems, 2011, 26 (2): 905- 914.
DOI |
4 |
TAN Y, LI Y, CAO Y J, et al. Integrated optimization of network topology and DG outputs for MVDC distribution systems[J]. IEEE Transactions on Power Systems, 2018, 33 (1): 1121- 1123.
DOI |
5 |
徐明昕, 赵健, 王小宇, 等. 基于电压聚类和关联卷积的配电网户变关系识别方法[J]. 电力系统保护与控制, 2022, 50 (4): 92- 102.
DOI |
XU Mingxin, ZHAO Jian, WANG Xiaoyu, et al. Transformer-customer identification method for a low-voltage distribution network based on voltage clustering and incidence convolution[J]. Power System Protection and Control, 2022, 50 (4): 92- 102.
DOI |
|
6 | 肖勇, 赵云, 涂治东, 等. 基于改进的皮尔逊相关系数的低压配电网拓扑结构校验方法[J]. 电力系统保护与控制, 2019, 47 (11): 37- 43. |
XIAO Yong, ZHAO Yun, TU Zhidong, et al. Topology checking method for low voltage distribution network based on improved Pearson correlation coefficient[J]. Power System Protection and Control, 2019, 47 (11): 37- 43. | |
7 | 张华, 龙呈, 胡思洋, 等. 基于层次聚类法与皮尔逊相关系数的配电网拓扑校验方法[J]. 电力系统保护与控制, 2021, 49 (21): 88- 96. |
ZHANG Hua, LONG Cheng, HU Siyang, et al. Topology verification method of a distribution network based on hierarchical clustering and the Pearson correlation coefficient[J]. Power System Protection and Control, 2021, 49 (21): 88- 96. | |
8 | 陈招安, 黄纯, 张志丹, 等. 基于T型灰色关联度和KNN算法的低压配电网台区拓扑识别方法[J]. 电力系统保护与控制, 2021, 49 (1): 163- 169. |
CHEN Zhaoan, HUANG Chun, ZHANG Zhidan, et al. Topology identification method of a low voltage distribution network based on T-type grey correlation degree and KNN algorithm[J]. Power System Protection and Control, 2021, 49 (1): 163- 169. | |
9 | 张磐, 黄旭, 高强伟, 等. 基于运行扰动数据分析的低压台区拓扑辨识方法研究[J/OL]. 电测与仪表, 2021: 1–8. (2021-02-24).https://kns.cnki.net/kcms/detail/23.1202.th.20210224.0910.004.html. |
ZHANG Pan, HUANG Xu, GAO Qiangwei, et al. Research on topology identification method of low-voltage station based on operational disturbance data analysis[J/OL]. Electrical Measurement & Instrumentation, 2021: 1–8. (2021-02-24).https://kns.cnki.net/kcms/detail/23.1202.th. 20210224.0910.004.html. | |
10 | 杨志淳, 沈煜, 杨帆, 等. 基于数据关联分析的低压配电网拓扑识别方法[J]. 电测与仪表, 2020, 57 (18): 5- 11, 35. |
YANG Zhichun, SHEN Yu, YANG Fan, et al. Topology identification method of low voltage distribution network based on data association analysis[J]. Electrical Measurement & Instrumentation, 2020, 57 (18): 5- 11, 35. | |
11 |
DEKA D, BACKHAUS S, CHERTKOV M. Structure learning in power distribution networks[J]. IEEE Transactions on Control of Network Systems, 2018, 5 (3): 1061- 1074.
DOI |
12 |
DEKA D, CHERTKOV M, BACKHAUS S. Topology estimation using graphical models in multi-phase power distribution grids[J]. IEEE Transactions on Power Systems, 2020, 35 (3): 1663- 1673.
DOI |
13 | 贾科, 李论, 杨哲, 等. 基于贝叶斯压缩感知理论的配网故障定位研究[J]. 中国电机工程学报, 2019, 39 (12): 3475- 3486. |
JIA Ke, LI Lun, YANG Zhe, et al. Research on distribution network fault location based on Bayesian compressed sensing theory[J]. Proceedings of the CSEE, 2019, 39 (12): 3475- 3486. | |
14 | 许栋梁, 赵健, 王小宇, 等. 基于有向邻接矩阵的配电网拓扑检测与识别[J]. 电力系统保护与控制, 2021, 49 (16): 76- 85. |
XU Dongliang, ZHAO Jian, WANG Xiaoyu, et al. Distribution network topology detection and identification based on a directed adjacency matrix[J]. Power System Protection and Control, 2021, 49 (16): 76- 85. | |
15 | 吴在军, 徐俊俊, 余星火, 等. 主动配电网状态估计技术评述[J]. 电力系统自动化, 2017, 41 (13): 182- 191. |
WU Zaijun, XU Junjun, YU Xinghuo, et al. Review on state estimation technique of active distribution network[J]. Automation of Electric Power Systems, 2017, 41 (13): 182- 191. | |
16 | 杨虎臣, 王晓东, 史志鹏, 等. 基于电压相似性评估的低压配电网户变关系和相位识别技术研究[J]. 电测与仪表, 2023, 60 (2): 91- 96. |
YANG Huchen, WANG Xiaodong, SHI Zhipeng, et al. Research on household variation relation and phase recognition technology of low voltage distribution network based on voltage similarity assessment[J]. Electrical Measurement & Instrumentation, 2023, 60 (2): 91- 96. | |
17 |
ZHAO J, XU M X, WANG X Y, et al. Data-driven based low-voltage distribution system transformer-customer relationship identification[J]. IEEE Transactions on Power Delivery, 2022, 37 (4): 2966- 2977.
DOI |
18 |
PAPPU S J, BHATT N, PASUMARTHY R, et al. Identifying topology of low voltage distribution networks based on smart meter data[J]. IEEE Transactions on Smart Grid, 2018, 9 (5): 5113- 5122.
DOI |
19 | 耿俊成, 吴博, 万迪明, 等. 基于离群点检测的低压配电网拓扑结构校验[J]. 电力信息与通信技术, 2017, 15 (5): 61- 65. |
GENG Juncheng, WU Bo, WAN Diming, et al. Low-voltage transformer area topology verification based on outlier detection[J]. Electric Power Information and Communication Technology, 2017, 15 (5): 61- 65. | |
20 | 耿俊成, 张小斐, 郭志民, 等. 基于离散Fréchet距离和剪辑近邻法的低压配电网拓扑结构校验方法[J]. 电测与仪表, 2017, 54 (5): 50- 55. |
GENG Juncheng, ZHANG Xiaofei, GUO Zhimin, et al. Topology verification of low-voltage transformer areas based on discrete Fréchet distance and editing nearest-neighbors method[J]. Electrical Measurement & Instrumentation, 2017, 54 (5): 50- 55. | |
21 | 王日宁, 武一, 魏浩铭, 等. 基于智能终端特征信号的配电网台区拓扑识别方法[J]. 电力系统保护与控制, 2021, 49 (6): 83- 89. |
WANG Rining, WU Yi, WEI Haoming, et al. Topology identification method for a distribution network area based on the characteristic signal of a smart terminal unit[J]. Power System Protection and Control, 2021, 49 (6): 83- 89. | |
22 | 钟加勇, 熊小伏, 何迎春, 等. 面向台区智能终端的即插即用和拓扑识别方法[J]. 电力系统自动化, 2021, 45 (10): 166- 173. |
ZHONG Jiayong, XIONG Xiaofu, HE Yingchun, et al. Plug-play and topology identification method for intelligent terminal in distribution station area[J]. Automation of Electric Power Systems, 2021, 45 (10): 166- 173. | |
23 | 武奕彤. 智能配电网分布式拓扑识别与应用方法[J]. 电力系统保护与控制, 2019, 47 (16): 136- 142. |
WU Yitong. Distributed topology identification and application method of smart distribution network[J]. Power System Protection and Control, 2019, 47 (16): 136- 142. | |
24 | 范开俊, 徐丙垠, 董俊, 等. 基于智能终端逐级查询的馈线拓扑识别方法[J]. 电力系统自动化, 2015, 39 (11): 180- 186. |
FAN Kaijun, XU Bingyin, DONG Jun, et al. Identification method for feeder topology based on successive polling of smart terminal unit[J]. Automation of Electric Power Systems, 2015, 39 (11): 180- 186. | |
25 |
COUILLET R, HACHEM W. Fluctuations of spiked random matrix models and failure diagnosis in sensor networks[J]. IEEE Transactions on Information Theory, 2013, 59 (1): 509- 525.
DOI |
26 |
XU Z Y. Perturbation analysis for subspace decomposition with applications in subspace-based algorithms[J]. IEEE Transactions on Signal Processing, 2002, 50 (11): 2820- 2830.
DOI |
27 |
FARAJOLLAHI M, SHAHSAVARI A, STEWART E M, et al. Locating the source of events in power distribution systems using micro-PMU data[J]. IEEE Transactions on Power Systems, 2018, 33 (6): 6343- 6354.
DOI |
28 |
XIE J R, HONG T, LAING T, et al. On normality assumption in residual simulation for probabilistic load forecasting[J]. IEEE Transactions on Smart Grid, 2017, 8 (3): 1046- 1053.
DOI |
29 | 杜胜永, 柴乔林, 王华. 基于节点聚合度的生成簇算法[J]. 计算机应用, 2006, 26 (4): 948- 950. |
DU Shengyong, CHAI Qiaolin, WANG Hua. Clustering algorithm based on convergence degree[J]. Journal of Computer Applications, 2006, 26 (4): 948- 950. |
[1] | 张广平,奚增红,巩良,王淑萍,杨俊芬,杨超. 750 kV钢管混凝土变电构架结构关键节点研究[J]. 中国电力, 2016, 49(8): 1-6. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||