1 |
彭苏萍, 韩敏芳, 杨翠柏, 等. 固体氧化物燃料电池[J]. 物理, 2004, 33 (2): 90- 94.
DOI
|
|
PENG Suping, HAN Minfang, YANG Cuibai, et al. Solid oxide fuel cells[J]. Physics, 2004, 33 (2): 90- 94.
DOI
|
2 |
韩敏芳, 彭苏萍. 碳基燃料固体氧化物燃料电池发展前景[J]. 中国工程科学, 2013, 15 (2): 4- 6, 26.
DOI
|
|
HAN Minfang, PENG Suping. Prospect of carbon-based solid oxide fuel cells[J]. Engineering Sciences, 2013, 15 (2): 4- 6, 26.
DOI
|
3 |
胡亮, 杨志宾, 熊星宇, 等. 我国固体氧化物燃料电池产业发展战略研究[J]. 中国工程科学, 2022, 24 (3): 118- 126.
DOI
|
|
HU Liang, YANG Zhibin, XIONG Xingyu, et al. Development strategy for solid oxide fuel cell industry in China[J]. Strategic Study of CAE, 2022, 24 (3): 118- 126.
DOI
|
4 |
凌文, 刘玮, 李育磊, 等. 中国氢能基础设施产业发展战略研究[J]. 中国工程科学, 2019, 21 (3): 76- 83.
DOI
|
|
LING Wen, LIU Wei, LI Yulei, et al. Development strategy of hydrogen infrastructure industry in China[J]. Strategic Study of CAE, 2019, 21 (3): 76- 83.
DOI
|
5 |
任大伟, 侯金鸣, 肖晋宇, 等. 支撑双碳目标的新型储能发展潜力及路径研究[J]. 中国电力, 2023, 56 (8): 17- 25.
|
|
REN Dawei, HOU Jinming, XIAO Jinyu, et al. Research on development potential and path of new energy storage supporting carbon peak and carbon neutrality[J]. Electric Power, 2023, 56 (8): 17- 25.
|
6 |
王小飞, 任洪波, 吴琼, 等. 考虑中长期碳减排约束的区域综合能源系统多阶段动态规划[J]. 中国电力, 2023, 56 (11): 185- 196.
|
|
WANG Xiaofei, REN Hongbo, WU Qiong, et al. Multi-stage dynamic plan of regional integrated energy system considering medium and long-term carbon emission reduction constraints[J]. Electric Power, 2023, 56 (11): 185- 196.
|
7 |
CHEN J W, HU Z C, ZHANG H S. A novel control scheme to mitigate temperature profile variation in a SOFC System[J]. Energy Reports, 2022, 8, 10604- 10613.
DOI
|
8 |
黎冲, 王成辉, 王高, 等. 基于数据驱动的锂离子电池健康状态估计技术[J]. 中国电力, 2022, 55 (8): 73- 86, 95.
|
|
LI Chong, WANG Chenghui, WANG Gao, et al. Technology of lithium-ion battery state-of-health assessment based on data-driven[J]. Electric Power, 2022, 55 (8): 73- 86, 95.
|
9 |
XIONG X Y, YANG L, WU Y F, et al. External temperature field test and leakage fault diagnosis for SOFC stacks[J]. International Journal of Hydrogen Energy, 2023, 48 (7): 2788- 2800.
DOI
|
10 |
何礼明. 基于机器学习模型融合的SOFC故障诊断[D]. 北京: 华北电力大学, 2022.
|
|
HE Liming. Fault diagnosis of solid oxide fuel cell based on machine learning model fusion[D]. Beijing: North China Electric Power University, 2022.
|
11 |
钟杰, 张莉, 徐宏, 等. SOFC热电联供系统应用模拟[J]. 动力工程学报, 2015, 35 (10): 846- 852.
DOI
|
|
ZHONG Jie, ZHANG Li, XU Hong, et al. Application simulation of SOFC-CHP systems[J]. Journal of Chinese Society of Power Engineering, 2015, 35 (10): 846- 852.
DOI
|
12 |
AGUIAR P, ADJIMAN C S, BRANDON N P. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance[J]. Journal of Power Sources, 2004, 138 (1/2): 120- 136.
|
13 |
赵青, 吕小静, 王蔚国, 等. 重整条件对SOFC电池堆性能影响的实验研究[J]. 动力工程学报, 2015, 35 (11): 929- 933.
DOI
|
|
ZHAO Qing, LYU Xiaojing, WANG Weiguo, et al. Effects of reforming conditions on performance of the SOFC stack[J]. Journal of Chinese Society of Power Engineering, 2015, 35 (11): 929- 933.
DOI
|
14 |
张小坤, 吕大伟, 尹中强, 等. 平板型固体氧化物燃料电池内温度分布规律[J]. 中国电力, 2023, 56 (6): 123- 131.
|
|
ZHANG Xiaokun, LV Dawei, YIN Zhongqiang, et al. Temperature distribution in planer solid oxide fuel cell[J]. Electric Power, 2023, 56 (6): 123- 131.
|
15 |
COSTAMAGNA P, DE GIORGI A, MAGISTRI L, et al. A classification approach for model-based fault diagnosis in power generation systems based on solid oxide fuel cells[J]. IEEE Transactions on Energy Conversion, 2016, 31 (2): 676- 687.
DOI
|
16 |
COSTAMAGNA P, DE GIORGI A, MOSER G, et al. Data-driven techniques for fault diagnosis in power generation plants based on solid oxide fuel cells[J]. Energy Conversion and Management, 2019, 180, 281- 291.
DOI
|
17 |
WU X J, YE Q W. Fault diagnosis and prognostic of solid oxide fuel cells[J]. Journal of Power Sources, 2016, 321, 47- 56.
DOI
|
18 |
PAHON E, YOUSFI STEINER N, JEMEI S, et al. Solid oxide fuel cell fault diagnosis and ageing estimation based on wavelet transform approach[J]. International Journal of Hydrogen Energy, 2016, 41 (31): 13678- 13687.
DOI
|
19 |
ZHANG Z H, LI S H, XIAO Y W, et al. Intelligent simultaneous fault diagnosis for solid oxide fuel cell system based on deep learning[J]. Applied Energy, 2019, 233, 930- 942.
|
20 |
XUE T, WU X L, ZHAO D Q, et al. Fault-tolerant control for steam fluctuation in SOFC system with reforming units[J]. International Journal of Hydrogen Energy, 2019, 44 (41): 23360- 23376.
DOI
|
21 |
王兴娣. 基于数据驱动的质子交换膜燃料电池电堆故障诊断研究[D]. 成都: 西南交通大学, 2018.
|
|
WANG Xingdi. Study on data-driven fault diagnosis for proton exchange membrane fuel cell stack[D]. Chengdu: Southwest Jiaotong University, 2018.
|
22 |
WU X, CHEN X W. Internal leakage detection for inlet guide vane system at gas turbine compressor with ensemble empirical mode decomposition[J]. Measurement, 2019, 134, 781- 787.
DOI
|
23 |
WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1 (1): 1- 41.
DOI
|
24 |
DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62 (3): 531- 544.
DOI
|
25 |
HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A, 1998, 454 (1971): 903- 998.
DOI
|