中国电力 ›› 2024, Vol. 57 ›› Issue (12): 71-81.DOI: 10.11930/j.issn.1004-9649.202406005
陈庆斌1(), 杨耿煌1,2(
), 耿丽清1,2, 苏娟3, 孙京生4
收稿日期:
2024-06-02
出版日期:
2024-12-28
发布日期:
2024-12-27
作者简介:
陈庆斌(2000—),男,硕士研究生,从事新能源功率预测、综合能源系统研究,E-mail:c1185955913@163.com基金资助:
Qingbin CHEN1(), Genghuang YANG1,2(
), Liqing GENG1,2, Juan SU3, Jingsheng SUN4
Received:
2024-06-02
Online:
2024-12-28
Published:
2024-12-27
Supported by:
摘要:
针对光伏功率随机性较强等问题,提出了一种基于相似日选取和数据重构的短期光伏功率组合预测方法。首先,利用核模糊C均值算法对光伏功率进行聚类分析,通过最大信息系数提取主要影响特征;其次,结合合作博弈思想计算预测日和历史日的综合相关系数,挑选相关性较强的历史日构建训练集;然后,利用变分模态分解将光伏功率分解为若干子序列,计算排列熵值并重构为趋势项、低频项和高频项;最后,对趋势项和低频项采用长短期记忆神经网络进行预测,对高频项采用卷积神经网络-双向长短期记忆神经网络-注意力机制模型进行预测,将结果叠加得到最终预测结果。经实例验证,在不同天气条件下,所提模型整体预测误差最小,可有效提高预测精度。
陈庆斌, 杨耿煌, 耿丽清, 苏娟, 孙京生. 基于相似日选取和数据重构的短期光伏功率组合预测方法[J]. 中国电力, 2024, 57(12): 71-81.
Qingbin CHEN, Genghuang YANG, Liqing GENG, Juan SU, Jingsheng SUN. Short Term Photovoltaic Power Combination Prediction Method Based on Similar Day Selection and Data Reconstruction[J]. Electric Power, 2024, 57(12): 71-81.
影响特征 | 晴天 | 多云 | 雨天 | |||
组件温度 | 0.506 | 0.346 | 0.385 | |||
温度 | 0.280 | 0.192 | 0.233 | |||
气压 | 0.423 | 0.354 | 0.327 | |||
湿度 | 0.210 | 0.169 | 0.234 | |||
总辐射 | 0.703 | 0.604 | 0.579 | |||
直射辐射 | 0.688 | 0.600 | 0.575 | |||
散射辐射 | 0.395 | 0.300 | 0.413 |
表 1 光伏功率与影响特征的相关系数
Table 1 The correlation coefficient between photovoltaic power and impact characteristics
影响特征 | 晴天 | 多云 | 雨天 | |||
组件温度 | 0.506 | 0.346 | 0.385 | |||
温度 | 0.280 | 0.192 | 0.233 | |||
气压 | 0.423 | 0.354 | 0.327 | |||
湿度 | 0.210 | 0.169 | 0.234 | |||
总辐射 | 0.703 | 0.604 | 0.579 | |||
直射辐射 | 0.688 | 0.600 | 0.575 | |||
散射辐射 | 0.395 | 0.300 | 0.413 |
日期 | M1 | M2 | M3 | M4 | ||||||||||||||||||||
Q1 | Q2 | Q3 | Q1 | Q2 | Q3 | Q1 | Q2 | Q3 | Q1 | Q2 | Q3 | |||||||||||||
06-04 | 0.890 | 0.979 | 0.981 | 0.840 | 0.977 | 0.977 | 0.519 | 0.514 | 0.506 | 1.312 | 1.542 | 1.550 | ||||||||||||
06-05 | 0.891 | 0.962 | 0.964 | 0.950 | 0.975 | 0.977 | 0.519 | 0.535 | 0.532 | 2.345 | 2.456 | 2.457 | ||||||||||||
06-08 | 0.955 | 0.955 | 0.958 | 0.908 | 0.938 | 0.938 | 0.585 | 0.593 | 0.605 | 1.848 | 1.877 | 1.890 | ||||||||||||
06-10 | 0.839 | 0.979 | 0.979 | 0.720 | 0.987 | 0.985 | 0.628 | 0.603 | 0.602 | 0.931 | 1.363 | 1.362 | ||||||||||||
06-15 | 0.977 | 0.995 | 0.996 | 0.961 | 0.996 | 0.996 | 0.570 | 0.490 | 0.485 | 2.505 | 2.478 | 2.474 | ||||||||||||
06-16 | 0.980 | 0.998 | 0.998 | 0.952 | 0.998 | 0.998 | 0.512 | 0.472 | 0.469 | 0.609 | 0.599 | 0.596 | ||||||||||||
06-27 | 0.979 | 0.999 | 0.999 | 0.950 | 0.999 | 0.999 | 0.600 | 0.456 | 0.454 | 2.529 | 2.454 | 2.452 | ||||||||||||
06-30 | 0.977 | 0.995 | 0.995 | 0.947 | 0.994 | 0.994 | 0.417 | 0.477 | 0.473 | 2.339 | 2.464 | 2.460 | ||||||||||||
07-01 | 0.941 | 0.959 | 0.959 | 0.865 | 0.966 | 0.965 | 0.442 | 0.502 | 0.500 | 2.248 | 2.427 | 2.424 | ||||||||||||
07-14 | 0.969 | 0.999 | 1.000 | 0.914 | 0.999 | 0.999 | 0.871 | 0.938 | 0.927 | 2.734 | 2.915 | 2.905 | ||||||||||||
07-18 | 0.944 | 0.899 | 0.905 | 0.880 | 0.937 | 0.933 | 0.867 | 0.813 | 0.836 | 2.062 | 2.049 | 2.068 | ||||||||||||
07-19 | 0.968 | 0.958 | 0.963 | 0.937 | 0.941 | 0.947 | 0.854 | 0.895 | 0.907 | 0.369 | 0.387 | 0.391 | ||||||||||||
07-20 | 0.948 | 0.934 | 0.939 | 0.926 | 0.941 | 0.948 | 0.838 | 0.816 | 0.838 | 0.032 | 0.015 | 0.022 | ||||||||||||
07-24 | 0.966 | 0.975 | 0.976 | 0.916 | 0.973 | 0.970 | 0.852 | 0.899 | 0.906 | 2.711 | 2.823 | 2.828 | ||||||||||||
07-27 | 0.969 | 1.000 | 1.000 | 0.924 | 0.999 | 1.000 | 0.888 | 0.975 | 0.981 | 2.779 | 2.972 | 2.979 | ||||||||||||
07-28 | 0.932 | 0.975 | 0.977 | 0.989 | 0.973 | 0.977 | 0.862 | 0.895 | 0.905 | 0.786 | 0.873 | 0.881 |
表 2 晴天主要影响特征的相关系数
Table 2 The correlation coefficient of the main impact characteristics of sunny days
日期 | M1 | M2 | M3 | M4 | ||||||||||||||||||||
Q1 | Q2 | Q3 | Q1 | Q2 | Q3 | Q1 | Q2 | Q3 | Q1 | Q2 | Q3 | |||||||||||||
06-04 | 0.890 | 0.979 | 0.981 | 0.840 | 0.977 | 0.977 | 0.519 | 0.514 | 0.506 | 1.312 | 1.542 | 1.550 | ||||||||||||
06-05 | 0.891 | 0.962 | 0.964 | 0.950 | 0.975 | 0.977 | 0.519 | 0.535 | 0.532 | 2.345 | 2.456 | 2.457 | ||||||||||||
06-08 | 0.955 | 0.955 | 0.958 | 0.908 | 0.938 | 0.938 | 0.585 | 0.593 | 0.605 | 1.848 | 1.877 | 1.890 | ||||||||||||
06-10 | 0.839 | 0.979 | 0.979 | 0.720 | 0.987 | 0.985 | 0.628 | 0.603 | 0.602 | 0.931 | 1.363 | 1.362 | ||||||||||||
06-15 | 0.977 | 0.995 | 0.996 | 0.961 | 0.996 | 0.996 | 0.570 | 0.490 | 0.485 | 2.505 | 2.478 | 2.474 | ||||||||||||
06-16 | 0.980 | 0.998 | 0.998 | 0.952 | 0.998 | 0.998 | 0.512 | 0.472 | 0.469 | 0.609 | 0.599 | 0.596 | ||||||||||||
06-27 | 0.979 | 0.999 | 0.999 | 0.950 | 0.999 | 0.999 | 0.600 | 0.456 | 0.454 | 2.529 | 2.454 | 2.452 | ||||||||||||
06-30 | 0.977 | 0.995 | 0.995 | 0.947 | 0.994 | 0.994 | 0.417 | 0.477 | 0.473 | 2.339 | 2.464 | 2.460 | ||||||||||||
07-01 | 0.941 | 0.959 | 0.959 | 0.865 | 0.966 | 0.965 | 0.442 | 0.502 | 0.500 | 2.248 | 2.427 | 2.424 | ||||||||||||
07-14 | 0.969 | 0.999 | 1.000 | 0.914 | 0.999 | 0.999 | 0.871 | 0.938 | 0.927 | 2.734 | 2.915 | 2.905 | ||||||||||||
07-18 | 0.944 | 0.899 | 0.905 | 0.880 | 0.937 | 0.933 | 0.867 | 0.813 | 0.836 | 2.062 | 2.049 | 2.068 | ||||||||||||
07-19 | 0.968 | 0.958 | 0.963 | 0.937 | 0.941 | 0.947 | 0.854 | 0.895 | 0.907 | 0.369 | 0.387 | 0.391 | ||||||||||||
07-20 | 0.948 | 0.934 | 0.939 | 0.926 | 0.941 | 0.948 | 0.838 | 0.816 | 0.838 | 0.032 | 0.015 | 0.022 | ||||||||||||
07-24 | 0.966 | 0.975 | 0.976 | 0.916 | 0.973 | 0.970 | 0.852 | 0.899 | 0.906 | 2.711 | 2.823 | 2.828 | ||||||||||||
07-27 | 0.969 | 1.000 | 1.000 | 0.924 | 0.999 | 1.000 | 0.888 | 0.975 | 0.981 | 2.779 | 2.972 | 2.979 | ||||||||||||
07-28 | 0.932 | 0.975 | 0.977 | 0.989 | 0.973 | 0.977 | 0.862 | 0.895 | 0.905 | 0.786 | 0.873 | 0.881 |
日期 | M1 | M2 | M3 | M4 | ||||||||||||
整体相 关系数 | 排序 | 整体相 关系数 | 排序 | 整体相 关系数 | 排序 | 整体相 关系数 | 排序 | |||||||||
06-04 | 2.850 | 12 | 2.794 | 13 | 1.539 | 12 | 4.404 | 11 | ||||||||
06-05 | 2.817 | 14 | 2.902 | 8 | 1.586 | 10 | 7.258 | 7 | ||||||||
06-08 | 2.868 | 10 | 2.784 | 14 | 1.783 | 9 | 5.615 | 10 | ||||||||
06-10 | 2.797 | 15 | 2.692 | 16 | 1.833 | 8 | 3.656 | 12 | ||||||||
06-15 | 2.968 | 4 | 2.953 | 1 | 1.545 | 11 | 7.457 | 4 | ||||||||
06-16 | 2.976 | 2 | 2.948 | 2 | 1.453 | 14 | 1.804 | 14 | ||||||||
06-27 | 2.977 | 1 | 2.948 | 3 | 1.510 | 13 | 7.435 | 5 | ||||||||
06-30 | 2.967 | 6 | 2.935 | 5 | 1.367 | 16 | 7.263 | 6 | ||||||||
07-01 | 2.859 | 11 | 2.796 | 12 | 1.444 | 15 | 7.099 | 8 | ||||||||
07-14 | 2.968 | 5 | 2.912 | 7 | 2.736 | 2 | 8.554 | 2 | ||||||||
07-18 | 2.748 | 16 | 2.750 | 15 | 2.516 | 6 | 6.179 | 9 | ||||||||
07-19 | 2.889 | 8 | 2.825 | 10 | 2.656 | 5 | 1.147 | 15 | ||||||||
07-20 | 2.821 | 13 | 2.815 | 11 | 2.492 | 7 | 0.069 | 16 | ||||||||
07-24 | 2.917 | 7 | 2.859 | 9 | 2.657 | 4 | 8.362 | 3 | ||||||||
07-27 | 2.969 | 3 | 2.923 | 6 | 2.844 | 1 | 8.730 | 1 | ||||||||
07-28 | 2.884 | 9 | 2.939 | 4 | 2.662 | 3 | 2.540 | 13 |
表 3 整体相关系数排序结果
Table 3 Overall correlation coefficient ranking results
日期 | M1 | M2 | M3 | M4 | ||||||||||||
整体相 关系数 | 排序 | 整体相 关系数 | 排序 | 整体相 关系数 | 排序 | 整体相 关系数 | 排序 | |||||||||
06-04 | 2.850 | 12 | 2.794 | 13 | 1.539 | 12 | 4.404 | 11 | ||||||||
06-05 | 2.817 | 14 | 2.902 | 8 | 1.586 | 10 | 7.258 | 7 | ||||||||
06-08 | 2.868 | 10 | 2.784 | 14 | 1.783 | 9 | 5.615 | 10 | ||||||||
06-10 | 2.797 | 15 | 2.692 | 16 | 1.833 | 8 | 3.656 | 12 | ||||||||
06-15 | 2.968 | 4 | 2.953 | 1 | 1.545 | 11 | 7.457 | 4 | ||||||||
06-16 | 2.976 | 2 | 2.948 | 2 | 1.453 | 14 | 1.804 | 14 | ||||||||
06-27 | 2.977 | 1 | 2.948 | 3 | 1.510 | 13 | 7.435 | 5 | ||||||||
06-30 | 2.967 | 6 | 2.935 | 5 | 1.367 | 16 | 7.263 | 6 | ||||||||
07-01 | 2.859 | 11 | 2.796 | 12 | 1.444 | 15 | 7.099 | 8 | ||||||||
07-14 | 2.968 | 5 | 2.912 | 7 | 2.736 | 2 | 8.554 | 2 | ||||||||
07-18 | 2.748 | 16 | 2.750 | 15 | 2.516 | 6 | 6.179 | 9 | ||||||||
07-19 | 2.889 | 8 | 2.825 | 10 | 2.656 | 5 | 1.147 | 15 | ||||||||
07-20 | 2.821 | 13 | 2.815 | 11 | 2.492 | 7 | 0.069 | 16 | ||||||||
07-24 | 2.917 | 7 | 2.859 | 9 | 2.657 | 4 | 8.362 | 3 | ||||||||
07-27 | 2.969 | 3 | 2.923 | 6 | 2.844 | 1 | 8.730 | 1 | ||||||||
07-28 | 2.884 | 9 | 2.939 | 4 | 2.662 | 3 | 2.540 | 13 |
天气 | 相似日 个数 | LSTM模型 | CNN-BiLSTM- ATTENTION模型 | |||||||||||
eMA/ kW | eRMS/ kW | eMAP | eMA/ kW | eRMS/ kW | eMAP | |||||||||
晴天 | 5 | 3.103 | 3.815 | 0.121 | 3.194 | 3.774 | 0.125 | |||||||
7 | 3.182 | 4.033 | 0.114 | 2.079 | 2.538 | 0.108 | ||||||||
9 | 2.814 | 3.452 | 0.124 | 2.389 | 2.736 | 0.115 | ||||||||
11 | 2.546 | 2.886 | 0.115 | 2.217 | 2.502 | 0.081 | ||||||||
多云 | 5 | 6.115 | 7.110 | 0.294 | 5.983 | 6.952 | 0.271 | |||||||
7 | 4.920 | 6.040 | 0.226 | 4.669 | 5.757 | 0.218 | ||||||||
9 | 5.280 | 6.445 | 0.239 | 4.876 | 6.025 | 0.219 | ||||||||
11 | 5.604 | 6.703 | 0.253 | 5.182 | 6.283 | 0.233 | ||||||||
雨天 | 5 | 5.045 | 6.426 | 0.335 | 5.001 | 6.388 | 0.324 | |||||||
7 | 5.235 | 6.477 | 0.337 | 5.124 | 6.545 | 0.333 | ||||||||
9 | 5.542 | 6.637 | 0.421 | 5.346 | 6.850 | 0.334 | ||||||||
11 | 5.873 | 6.838 | 0.454 | 5.692 | 7.220 | 0.356 |
表 4 相似日个数误差对比
Table 4 Comparison of errors in the number of similar days
天气 | 相似日 个数 | LSTM模型 | CNN-BiLSTM- ATTENTION模型 | |||||||||||
eMA/ kW | eRMS/ kW | eMAP | eMA/ kW | eRMS/ kW | eMAP | |||||||||
晴天 | 5 | 3.103 | 3.815 | 0.121 | 3.194 | 3.774 | 0.125 | |||||||
7 | 3.182 | 4.033 | 0.114 | 2.079 | 2.538 | 0.108 | ||||||||
9 | 2.814 | 3.452 | 0.124 | 2.389 | 2.736 | 0.115 | ||||||||
11 | 2.546 | 2.886 | 0.115 | 2.217 | 2.502 | 0.081 | ||||||||
多云 | 5 | 6.115 | 7.110 | 0.294 | 5.983 | 6.952 | 0.271 | |||||||
7 | 4.920 | 6.040 | 0.226 | 4.669 | 5.757 | 0.218 | ||||||||
9 | 5.280 | 6.445 | 0.239 | 4.876 | 6.025 | 0.219 | ||||||||
11 | 5.604 | 6.703 | 0.253 | 5.182 | 6.283 | 0.233 | ||||||||
雨天 | 5 | 5.045 | 6.426 | 0.335 | 5.001 | 6.388 | 0.324 | |||||||
7 | 5.235 | 6.477 | 0.337 | 5.124 | 6.545 | 0.333 | ||||||||
9 | 5.542 | 6.637 | 0.421 | 5.346 | 6.850 | 0.334 | ||||||||
11 | 5.873 | 6.838 | 0.454 | 5.692 | 7.220 | 0.356 |
k | 中心频率 | |||||||||||||||||
3 | 1.46×10–4 | 0.05 | 0.28 | |||||||||||||||
4 | 4.02×10–5 | 0.03 | 0.12 | 0.37 | ||||||||||||||
5 | 3.78×10–5 | 0.02 | 0.07 | 0.23 | 0.38 | |||||||||||||
6 | 1.44×10–5 | 0.02 | 0.05 | 0.12 | 0.28 | 0.39 | ||||||||||||
7 | 1.52×10–5 | 0.02 | 0.05 | 0.10 | 0.28 | 0.38 | 0.44 | |||||||||||
8 | 1.38×10–5 | 0.02 | 0.05 | 0.10 | 0.20 | 0.29 | 0.38 | 0.45 | ||||||||||
9 | 1.22×10–5 | 0.02 | 0.05 | 0.08 | 0.15 | 0.23 | 0.29 | 0.38 | 0.45 |
表 5 晴天中心频率
Table 5 Sunny center frequency
k | 中心频率 | |||||||||||||||||
3 | 1.46×10–4 | 0.05 | 0.28 | |||||||||||||||
4 | 4.02×10–5 | 0.03 | 0.12 | 0.37 | ||||||||||||||
5 | 3.78×10–5 | 0.02 | 0.07 | 0.23 | 0.38 | |||||||||||||
6 | 1.44×10–5 | 0.02 | 0.05 | 0.12 | 0.28 | 0.39 | ||||||||||||
7 | 1.52×10–5 | 0.02 | 0.05 | 0.10 | 0.28 | 0.38 | 0.44 | |||||||||||
8 | 1.38×10–5 | 0.02 | 0.05 | 0.10 | 0.20 | 0.29 | 0.38 | 0.45 | ||||||||||
9 | 1.22×10–5 | 0.02 | 0.05 | 0.08 | 0.15 | 0.23 | 0.29 | 0.38 | 0.45 |
IMF | 晴天 | 多云 | 雨天 | |||
IMF1 | 0.950 | 0.999 | 0.929 | |||
IMF2 | 0.982 | 0.983 | 0.940 | |||
IMF3 | 0.971 | 0.972 | 0.997 | |||
IMF4 | 0.964 | 0.959 | 0.938 | |||
IMF5 | 0.959 | 0.957 | 0.951 | |||
IMF6 | 0.990 | 0.999 | 0.998 | |||
IMF7 | 0.898 | 0.994 | 0.996 | |||
IMF8 | 0.710 | 0.896 | 0.862 | |||
IMF9 | 0.698 | 0.716 |
表 6 各IMF对应排列熵值
Table 6 Permutation entropy values of each IMF
IMF | 晴天 | 多云 | 雨天 | |||
IMF1 | 0.950 | 0.999 | 0.929 | |||
IMF2 | 0.982 | 0.983 | 0.940 | |||
IMF3 | 0.971 | 0.972 | 0.997 | |||
IMF4 | 0.964 | 0.959 | 0.938 | |||
IMF5 | 0.959 | 0.957 | 0.951 | |||
IMF6 | 0.990 | 0.999 | 0.998 | |||
IMF7 | 0.898 | 0.994 | 0.996 | |||
IMF8 | 0.710 | 0.896 | 0.862 | |||
IMF9 | 0.698 | 0.716 |
模型 | 晴天 | 模型 | 多云 | 模型 | 雨天 | |||||||||||||||||
eMA/kW | eRMS/kW | eMAP | eMA/kW | eRMS/kW | eMAP | eMA/kW | eRMS/kW | eMAP | ||||||||||||||
A1 | 6.551 | 7.947 | 0.271 | A1 | 7.306 | 8.293 | 0.430 | A1 | 8.991 | 10.821 | 0.511 | |||||||||||
A2 | 6.168 | 7.322 | 0.250 | A2 | 6.818 | 7.797 | 0.366 | A2 | 8.942 | 10.530 | 0.490 | |||||||||||
A3 | 5.436 | 6.633 | 0.217 | A3 | 6.595 | 7.552 | 0.345 | A3 | 8.232 | 9.934 | 0.453 | |||||||||||
A4 | 4.152 | 5.491 | 0.178 | A4 | 6.423 | 7.359 | 0.303 | A4 | 5.252 | 6.783 | 0.382 | |||||||||||
A5 | 4.897 | 6.002 | 0.189 | A5 | 6.425 | 7.361 | 0.306 | A5 | 5.376 | 7.000 | 0.395 | |||||||||||
A6 | 4.757 | 5.794 | 0.183 | A6 | 6.558 | 7.409 | 0.325 | A6 | 5.458 | 7.244 | 0.411 | |||||||||||
A7 | 2.546 | 2.886 | 0.115 | A7 | 4.920 | 6.040 | 0.226 | A7 | 5.045 | 6.426 | 0.335 | |||||||||||
A8 | 2.217 | 2.502 | 0.081 | A8 | 4.669 | 5.757 | 0.218 | A8 | 5.001 | 6.388 | 0.324 | |||||||||||
A9 | 2.726 | 3.167 | 0.107 | A9 | 4.686 | 5.832 | 0.221 | A9 | 5.109 | 6.581 | 0.339 | |||||||||||
A10 | 1.768 | 2.378 | 0.073 | A10 | 4.380 | 5.271 | 0.215 | A10 | 4.837 | 6.084 | 0.313 |
表 7 不同预测模型的误差结果
Table 7 Errors of different prediction models
模型 | 晴天 | 模型 | 多云 | 模型 | 雨天 | |||||||||||||||||
eMA/kW | eRMS/kW | eMAP | eMA/kW | eRMS/kW | eMAP | eMA/kW | eRMS/kW | eMAP | ||||||||||||||
A1 | 6.551 | 7.947 | 0.271 | A1 | 7.306 | 8.293 | 0.430 | A1 | 8.991 | 10.821 | 0.511 | |||||||||||
A2 | 6.168 | 7.322 | 0.250 | A2 | 6.818 | 7.797 | 0.366 | A2 | 8.942 | 10.530 | 0.490 | |||||||||||
A3 | 5.436 | 6.633 | 0.217 | A3 | 6.595 | 7.552 | 0.345 | A3 | 8.232 | 9.934 | 0.453 | |||||||||||
A4 | 4.152 | 5.491 | 0.178 | A4 | 6.423 | 7.359 | 0.303 | A4 | 5.252 | 6.783 | 0.382 | |||||||||||
A5 | 4.897 | 6.002 | 0.189 | A5 | 6.425 | 7.361 | 0.306 | A5 | 5.376 | 7.000 | 0.395 | |||||||||||
A6 | 4.757 | 5.794 | 0.183 | A6 | 6.558 | 7.409 | 0.325 | A6 | 5.458 | 7.244 | 0.411 | |||||||||||
A7 | 2.546 | 2.886 | 0.115 | A7 | 4.920 | 6.040 | 0.226 | A7 | 5.045 | 6.426 | 0.335 | |||||||||||
A8 | 2.217 | 2.502 | 0.081 | A8 | 4.669 | 5.757 | 0.218 | A8 | 5.001 | 6.388 | 0.324 | |||||||||||
A9 | 2.726 | 3.167 | 0.107 | A9 | 4.686 | 5.832 | 0.221 | A9 | 5.109 | 6.581 | 0.339 | |||||||||||
A10 | 1.768 | 2.378 | 0.073 | A10 | 4.380 | 5.271 | 0.215 | A10 | 4.837 | 6.084 | 0.313 |
1 | 王东风, 刘婧, 黄宇, 等. 结合太阳辐射量计算与CNN-LSTM组合的光伏功率预测方法研究[J]. 太阳能学报, 2024, 45 (2): 443- 450. |
WANG Dongfeng, LIU Jing, HUANG Yu, et al. Photovoltaic power prediction method combinating solar radiation calculation and CNN-LSTM[J]. Acta Energiae Solaris Sinica, 2024, 45 (2): 443- 450. | |
2 |
ZHANG Y G, PAN Z Y, WANG H, et al. Achieving wind power and photovoltaic power prediction: an intelligent prediction system based on a deep learning approach[J]. Energy, 2023, 283, 129005.
DOI |
3 | 黄泽, 毕贵红, 谢旭, 等. 基于MBI-PBI-ResNet的超短期光伏功率预测[J]. 电力系统保护与控制, 2024, 52 (2): 165- 176. |
HUANG Ze, BI Guihong, XIE Xu, et al. Ultra-short-term PV power prediction based on MBI-PBI-ResNet[J]. Power System Protection and Control, 2024, 52 (2): 165- 176. | |
4 | 邱建, 张建新, 朱煜昆, 等. 光伏并网稳定控制系统设计方法及其在南方电网的应用与实践[J]. 南方电网技术, 2024, 18 (7): 139- 147. |
QIU Jian, ZHANG Jianxin, ZHUN Yukun, et al. Design method of stability control system for photovoltaic grid-connected station and its application and practice in CSG[J]. Southern Power System Technology, 2024, 18 (7): 139- 147. | |
5 | 解振学, 林帆, 王若谷, 等. 基于时序动态回归的超短期光伏发电功率预测方法[J]. 智慧电力, 2022, 50 (7): 45- 51. |
XIE Zhenxue, LIN Fan, WANG Ruogu, et al. Very short-term photovoltaic power forecasting method based on time series dynamic regression[J]. Smart Power, 2022, 50 (7): 45- 51. | |
6 | 郭洪武, 车建峰, 闫钇汛, 等. 基于无爬坡事件定义标准晴空集的短期光伏功率预测[J]. 中国电力, 2023, 56 (9): 187- 195. |
GUO Hongwu, CHE Jianfeng , YAN Yixun, et al. Short-term photovoltaic power prediction based on standard clear sky set defined by no climbing event[J]. Smart Power, 2023, 56 (9): 187- 195. | |
7 | 龙小慧, 秦际赟, 张青雷, 等. 基于相似日聚类及模态分解的短期光伏发电功率组合预测研究[J]. 电网技术, 2024, 48 (7): 2948- 2957. |
LONG Xiaohui, QIN Jiyun, ZHANG Qinglei, et al. Short-term photovoltaic power prediction study based on similar day clustering and modal decomposition[J]. Power System Technology, 2024, 48 (7): 2948- 2957. | |
8 | 李争, 张杰, 徐若思, 等. 基于相似日聚类和PCC-VMD-SSA-KELM模型的短期光伏功率预测[J]. 太阳能学报, 2024, 45 (2): 460- 468. |
LI Zheng, ZHANG Jie, XU Ruosi, et al. Short term photovoltaic power prediction based on similar day clustering and PCC-VMD-SSA-KELM model[J]. Acta Energiae Solaris Sinica, 2024, 45 (2): 460- 468. | |
9 |
SMYL S, DUDEK G, PELKA P. ES-dRNN: a hybrid exponential smoothing and dilated recurrent neural network model for short-term load forecasting[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (8): 11346- 11358.
DOI |
10 |
ZHANG N, LI Z Y, ZOU X, et al. Comparison of three short-term load forecast models in Southern California[J]. Energy, 2019, 189, 116358.
DOI |
11 | 孟安波, 许炫淙, 陈嘉铭, 等. 基于强化学习和组合式深度学习模型的超短期光伏功率预测[J]. 电网技术, 2021, 45 (12): 4721- 4728. |
MENG Anbo, XU Xuancong, CHEN Jiaming, et al. Ultra short term photovoltaic power prediction based on reinforcement learning and combined deep learning model[J]. Power System Technology, 2021, 45 (12): 4721- 4728. | |
12 | 陈铁, 张治藩, 李咸善, 等. 基于混合模态分解和LSTM-CNN的变压器油中溶解气体浓度预测[J]. 中国电力, 2023, 56 (1): 132- 141. |
CHEN Tie, ZHANG Zhifan, LI Xianshan, et al. Prediction of dissolved gas concentration in transformer oil based on hybrid mode decomposition and LSTM-CNN[J]. Electric Power, 2023, 56 (1): 132- 141. | |
13 |
ZHONG J Q, LIU L Y, SUN Q, et al. Prediction of photovoltaic power generation based on general regression and back propagation neural network[J]. Energy Procedia, 2018, 152, 1224- 1229.
DOI |
14 | 李秉晨, 于惠钧, 刘靖宇. 基于Kmeans和CEEMD-PE-LSTM 的短期光伏发电功率预测[J]. 水电能源科学, 2021, 39 (4): 204- 208. |
LI Bingchen, YU Huijun, LIU Jingyu. Prediction of short-term photovoltaic power generation based on Kmeans and CEEMD-PE-LSTM[J]. Water Resources and Power, 2021, 39 (4): 204- 208. | |
15 |
冯沛儒, 江桂芬, 徐加银, 等. 基于CEEMD-BiLSTM-RFR的短期光伏功率预测[J]. 科学技术与工程, 2024, 24 (5): 1955- 1962.
DOI |
FENG Peiru, JIANG Guifen, XU Jiayin, et al. Short-term photovoltaic power prediction based on CEEMD-BiLSTM-RFR[J]. Science Technology and Engineering, 2024, 24 (5): 1955- 1962.
DOI |
|
16 |
CHEN X, DING K, ZHANG J W, et al. Online prediction of ultra-short-term photovoltaic power using chaotic characteristic analysis, improved PSO and KELM[J]. Energy, 2022, 248, 123574.
DOI |
17 |
LI P T, ZHOU K L, LU X H, et al. A hybrid deep learning model for short-term PV power forecasting[J]. Applied Energy, 2020, 259, 114216.
DOI |
18 |
BÜYÜKŞAHIN Ü Ç, ERTEKIN Ş. Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition[J]. Neurocomputing, 2019, 361, 151- 163.
DOI |
19 | 王开艳, 杜浩东, 贾嵘, 等. 基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测[J]. 高电压技术, 2022, 48 (11): 4372- 4384. |
WANG Kaiyan, DU Haodong, JIA Rong, et al. Short-term interval probability prediction of photovoltaic power based on similar daily clustering and QR-CNN-BiLSTM model[J]. High Voltage Engineering, 2022, 48 (11): 4372- 4384. | |
20 | 赵雅雪, 王旭, 蒋传文, 等. 基于最大信息系数相关性分析和改进多层级门控LSTM的短期电价预测方法[J]. 中国电机工程学报, 2021, 41 (1): 135- 146. |
ZHAO Yaxue, WANG Xu, JIANG Chuanwen, et al. A novel short-term electricity price forecasting method based on correlation analysis with the maximal information coefficient and modified multi-hierachy gated LSTM[J]. Proceedings of the CSEE, 2021, 41 (1): 135- 146. | |
21 | 赵源上, 林伟芳. 基于皮尔逊相关系数融合密度峰值和熵权法典型场景研究[J]. 中国电力, 2023, 56 (5): 193- 202. |
ZHAO Yuanshang, LIN Weifang. Research on typical scenarios based on fusion density peak value and entropy weight method of Pearson’s correlation coefficient[J]. Electric Power, 2023, 56 (5): 193- 202. | |
22 | 于群, 霍筱东, 何剑, 等. 基于斯皮尔曼相关系数和系统惯量的中国电网停电事故趋势预测[J]. 中国电机工程学报, 2023, 43 (14): 5372- 5380. |
YU Qun, HUO Xiaodong, HE Jian, et al. Trend prediction of power blackout accidents in Chinese power grid based on Spearman’s correlation coefficient and system inertia[J]. Proceedings of the CSEE, 2023, 43 (14): 5372- 5380. | |
23 |
GAO C Z, HOU J P, GONG J. Study on the symbiotic development path of traditional villages in the county based on the grey relation analysis: the case of Xunxian county in Henan, China[J]. Grey Systems: Theory and Application, 2023, 13 (1): 193- 205.
DOI |
[1] | 刘抒睿, 李培强, 陈家煜, 郭雅诗. 基于VMD分解下的皮尔逊相关性分析及T-tFD的混合储能容量配置[J]. 中国电力, 2024, 57(7): 82-97. |
[2] | 王宇飞, 杜桐, 边伟国, 张钊, 刘慧婷, 杨丽君. 基于DTW K-medoids与VMD-多分支神经网络的多用户短期负荷预测[J]. 中国电力, 2024, 57(6): 121-130. |
[3] | 战文华, 车建峰, 王勃, 丁禹. 基于网格化数值天气预报的区域光伏发电多输出功率预测方法[J]. 中国电力, 2024, 57(3): 144-151. |
[4] | 张博智, 张茹, 焦东翔, 王龙宇, 周一凡, 周丽霞. 基于VMD-SAST的电能质量扰动分类识别方法[J]. 中国电力, 2024, 57(2): 34-40. |
[5] | 李翰章, 冯江涛, 王鹏程, 荣澔洁, 柴宇唤. 基于TDE-SO-AWM-GRU的光伏发电功率预测模型[J]. 中国电力, 2024, 57(12): 41-49. |
[6] | 张健宝, 王磊, 江伟建. 基于VMD和Duffing振子算法的配电网差动保护[J]. 中国电力, 2024, 57(11): 26-35. |
[7] | 王海燕, 钱林宇. 基于NGO-VMD的混合储能功率分配策略[J]. 中国电力, 2024, 57(11): 119-128. |
[8] | 郭洪武, 车建峰, 闫钇汛, 王丽婕. 基于无爬坡事件定义标准晴空集的短期光伏功率预测[J]. 中国电力, 2023, 56(9): 187-195. |
[9] | 徐一伦, 张彬桥, 黄婧, 谢枭, 王若昕, 沈丹青, 何丽娜, 杨凯帆. 考虑天气类型和相似日的IWPA-LSSVM光伏发电功率预测[J]. 中国电力, 2023, 56(2): 143-149. |
[10] | 赵隆, 温冠儒, 刘志成, 袁鹏, 董新胜. 基于参数优化的VMD-SVD和LSTM的输电杆塔倾斜状态识别[J]. 中国电力, 2023, 56(12): 217-226, 237. |
[11] | 李文武, 石强, 李丹, 胡群勇, 唐芸, 梅锦超. 基于VMD和PSO-SVR的短期电力负荷多阶段优化预测[J]. 中国电力, 2022, 55(8): 171-177. |
[12] | 马宗彪, 许素安, 朱少斌, 王晶. 基于特征加权模糊聚类的电力负荷分类[J]. 中国电力, 2022, 55(6): 25-32. |
[13] | 张娜, 任强, 刘广忱, 郭力萍, 李静宇. 基于VMD-GWO-ELMAN的光伏功率短期预测方法[J]. 中国电力, 2022, 55(5): 57-65. |
[14] | 贾睿, 杨国华, 郑豪丰, 张鸿皓, 柳萱, 郁航. 基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J]. 中国电力, 2022, 55(5): 47-56,110. |
[15] | 沙骏, 徐雨森, 刘冲冲, 冯定东, 胥峥, 臧海祥. 基于变分模态分解和分位数卷积-循环神经网络的短期风功率预测[J]. 中国电力, 2022, 55(12): 61-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||