[1] 周原冰, 杨方, 余潇潇, 等. 中国能源电力碳中和实现路径及实施关键问题[J]. 中国电力, 2022, 55(5): 1–11 ZHOU Yuanbing, YANG Fang, YU Xiaoxiao, et al. Realization pathways and key problems of carbon neutrality in China’s energy and power system[J]. Electric Power, 2022, 55(5): 1–11 [2] 唐雅洁, 龚迪阳, 倪筹帷, 等. 基于邻域前向时序最优组合的分布式光伏超短期功率预测[J]. 浙江电力, 2021, 40(10): 95–101 TANG Yajie, GONG Diyang, NI Chouwei, et al. Ultra-short-term power prediction of distributed photovoltaic based on optimal combination of neighborhood forward time series[J]. Zhejiang Electric Power, 2021, 40(10): 95–101 [3] 刘沅昆, 张维静, 张艳, 等. 面向新型电力系统的新能源与储能联合规划方法[J]. 智慧电力, 2022, 50(10): 1–8 LIU Yuankun, ZHANG Weijing, ZHANG Yan, et al. Joint planning method of renewable energy and engergy storage for new-type power system[J]. Smart Power, 2022, 50(10): 1–8 [4] 邓韦斯, 孟子超, 王皓怀, 等. 新能源功率预测特性分析及精度提升措施[J]. 南方电网技术, 2023, 17(2): 11–23 DENG Weisi, MENG Zichao, WANG Haohuai, et al. Renewable energy power prediction characteristics analysis and accuracy improvement measures[J]. Southern Power System Technology, 2023, 17(2): 11–23 [5] 吴应双, 冯祥勇, 王寅, 等. 一种考虑新能源电站出力不确定性的采样鲁棒无功优化方法[J]. 电力科学与技术学报, 2023, 38(2): 84–95 WU Yingshuang, FENG Xiangyong, WANG Yin, et al. A sample robust reactive power optimization approach considering the power output uncertainty of renewable energy stations[J]. Journal of Electric Power Science and Technology, 2023, 38(2): 84–95 [6] 刘晨曦, 李刚, 程春田, 等. 大小水电相关分析的地区小水电发电能力预测方法[J]. 水电能源科学, 2016, 34(8): 63–66, 58 LIU Chenxi, LI Gang, CHENG Chuntian, et al. Correlation analysis method of large and small hydropower for generation capacity forecasting of small hydropower stations[J]. Water Resources and Power, 2016, 34(8): 63–66, 58 [7] 叶林, 屈晓旭, 马明顺, 等. 含风-光-水的多能源系统的同质化耦合模型[J]. 电网技术, 2020, 44(9): 3201–3210 YE Lin, QU Xiaoxu, MA Mingshun, et al. Multi-energy system homogeneous coupling model considering wind-photovoltaic-hydro power generations[J]. Power System Technology, 2020, 44(9): 3201–3210 [8] 崔杨, 陈正洪, 许沛华. 基于机器学习的集群式风光一体短期功率预测技术[J]. 中国电力, 2020, 53(3): 1–7 CUI Yang, CHEN Zhenghong, XU Peihua. Short-term power prediction for wind farm and solar plant clusters based on machine learning method[J]. Electric Power, 2020, 53(3): 1–7 [9] SEVERIANO C A, DE LIMA E SILVA P C, WEISS COHEN M, et al. Evolving fuzzy time series for spatio-temporal forecasting in renewable energy systems[J]. Renewable Energy, 2021, 171: 764–783. [10] REIKARD G, ROBERTSON B, BIDLOT J R. Combining wave energy with wind and solar: short-term forecasting[J]. Renewable Energy, 2015, 81: 442–456. [11] FARAJI J, KETABI A, HASHEMI-DEZAKI H, et al. Optimal day-ahead self-scheduling and operation of prosumer microgrids using hybrid machine learning-based weather and load forecasting[J]. IEEE Access, 2020, 8: 157284–157305. [12] 张永蕊, 阎洁, 林爱美, 等. 多点数值天气预报风速和辐照度集中式修正方法研究[J]. 发电技术, 2022, 43(2): 278–286 ZHANG Yongrui, YAN Jie, LIN Aimei, et al. Integrated correction method of multi-point numerical weather prediction wind speed and irradiance[J]. Power Generation Technology, 2022, 43(2): 278–286 [13] YAN J, ZHANG H, LIU Y Q, et al. Forecasting the high penetration of wind power on multiple scales using multi-to-multi mapping[J]. IEEE Transactions on Power Systems, 2018, 33(3): 3276–3284. [14] ALIPOUR M, AGHAEI J, NOROUZI M, et al. A novel electrical net-load forecasting model based on deep neural networks and wavelet transform integration[J]. Energy, 2020, 205: 118106. [15] ZHANG H, YAN J, LIU Y Q, et al. Multi-source and temporal attention network for probabilistic wind power prediction[J]. IEEE Transactions on Sustainable Energy, 2021, 12(4): 2205–2218. [16] 刘永前, 林爱美, 阎洁, 等. 基于深度学习的风光场群功率预测方法研究[J]. 分布式能源, 2021, 6(2): 14–21 LIU Yongqian, LIN Aimei, YAN Jie, et al. Research on power forecasting method for wind farms and photovoltaic stations based on deep learning[J]. Distributed Energy, 2021, 6(2): 14–21 [17] 王函. 风光发电功率与用电负荷联合预测方法研究[D]. 北京: 华北电力大学, 2021. WANG Han. Study on joint forecasting method of wind and solar power generation power and power load[D]. Beijing: North China Electric Power University, 2021. [18] 章剑光, 刘理峰, 林海峰, 等. 基于空间相似度和深度学习的中长期用电量预测[J]. 浙江电力, 2021, 40(5): 45–52 ZHANG Jianguang, LIU Lifeng, LIN Haifeng, et al. Medium and long-term electricity consumption prediction based on spatial similarity and deep learning[J]. Zhejiang Electric Power, 2021, 40(5): 45–52 [19] 郑豪丰, 杨国华, 康文军, 等. 基于多负荷特征和TCN-GRU神经网络的负荷预测[J]. 中国电力, 2022, 55(11): 142–148 ZHENG Haofeng, YANG Guohua, KANG Wenjun, et al. Load forecasting based on multi-load characteristics and TCN-GRU neural network[J]. Electric Power, 2022, 55(11): 142–148 [20] 贾睿, 杨国华, 郑豪丰, 等. 基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J]. 中国电力, 2022, 55(5): 47–56, 110 JIA Rui, YANG Guohua, ZHENG Haofeng, et al. Combined wind power prediction method based on CNN-LSTM & GRU with adaptive weights[J]. Electric Power, 2022, 55(5): 47–56, 110 [21] 李丰君, 王磊, 赵健, 等. 基于天气融合和LSTM网络的分布式光伏短期功率预测方法[J]. 中国电力, 2022, 55(11): 149–154 LI Fengjun, WANG Lei, ZHAO Jian, et al. Research on distributed photovoltaic short-term power prediction method based on weather fusion and LSTM-net[J]. Electric Power, 2022, 55(11): 149–154 [22] 王渝红, 史云翔, 周旭, 等. 基于时间模式注意力机制的BiLSTM多风电机组超短期功率预测[J]. 高电压技术, 2022, 48(5): 1884–1892 WANG Yuhong, SHI Yunxiang, ZHOU Xu, et al. Ultra-short-term power prediction for BiLSTM multi wind turbines based on temporal pattern attention[J]. High Voltage Engineering, 2022, 48(5): 1884–1892 [23] 曾囿钧, 肖先勇, 徐方维, 等. 基于CNN-BiGRU-NN模型的短期负荷预测方法[J]. 中国电力, 2021, 54(9): 17–23 ZENG Youjun, XIAO Xianyong, XU Fangwei, et al. A short-term load forecasting method based on CNN-BiGRU-NN model[J]. Electric Power, 2021, 54(9): 17–23
|