[1] 张娜, 任强, 刘广忱, 等. 基于VMD-GWO-ELMAN的光伏功率短期预测方法[J]. 中国电力, 2022, 55(5): 57–65 ZHANG Na, REN Qiang, LIU Guangchen, et al. PV power short-term forecasting method based on VMD-GWO-ELMAN[J]. Electric Power, 2022, 55(5): 57–65 [2] 叶琳浩, 申展, 许峰, 等. 考虑光伏不确定性和时序相关性的分布鲁棒光储协同优化配置方法[J]. 南方电网技术, 2023, 17(4): 132–143 YE Linhao, SHEN Zhan, XU Feng, et al. Distributionally robust collaborative optimal allocation method of photovoltaic and energy storage considering photovoltaic uncertainty and temporal correlation[J]. Southern Power System Technology, 2023, 17(4): 132–143 [3] 王海燕, 刘佳康, 邓亚平. 基于预估-校正综合BP神经网络的短期光伏功率预测[J]. 智慧电力, 2023, 51(3): 46–52 WANG Haiyan, LIU Jiakang, DENG Yaping. Short-term photovoltaic power forecasting based on predict-correct combination BP neural network[J]. Smart Power, 2023, 51(3): 46–52 [4] 赖昌伟, 黎静华, 陈博, 等. 光伏发电出力预测技术研究综述[J]. 电工技术学报, 2019, 34(6): 1201–1217 LAI Changwei, LI Jinghua, CHEN Bo, et al. Review of photovoltaic power output prediction technology[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1201–1217 [5] 吉锌格, 李慧, 刘思嘉, 等. 基于MIE-LSTM的短期光伏功率预测[J]. 电力系统保护与控制, 2020, 48(7): 50–57 JI Xinge, LI Hui, LIU Sijia, et al. Short-term photovoltaic power forecasting based on MIE-LSTM[J]. Power System Protection and Control, 2020, 48(7): 50–57 [6] GUO X F, GAO Y, ZHENG D, et al. Study on short-term photovoltaic power prediction model based on the Stacking ensemble learning[J]. Energy Reports, 2020, 6: 1424–1431. [7] 朱旭坤, 姚李孝, 杨国清. 基于PSOEM和神经网络的光伏电站功率预测[J]. 电网与清洁能源, 2021, 37(7): 115–120, 135 ZHU Xukun, YAO Lixiao, YANG Guoqing. Power prediction of photovoltaic power plants based on PSOM algorithm and neural network[J]. Power System and Clean Energy, 2021, 37(7): 115–120, 135 [8] 崔佳豪, 毕利. 基于混合神经网络的光伏电量预测模型的研究[J]. 电力系统保护与控制, 2021, 49(13): 142–149 CUI Jiahao, BI Li. Research on photovoltaic power forecasting model based on hybrid neural network[J]. Power System Protection and Control, 2021, 49(13): 142–149 [9] 贾德香, 吕干云, 林芬, 等. 基于SAPSO-BP和分位数回归的光伏功率区间预测[J]. 电力系统保护与控制, 2021, 49(10): 20–26 JIA Dexiang, LÜ Ganyun, LIN Fen, et al. Photovoltaic power interval prediction based on SAPSO-BP and quantile regression[J]. Power System Protection and Control, 2021, 49(10): 20–26 [10] 李丰君, 王磊, 赵健, 等. 基于天气融合和LSTM网络的分布式光伏短期功率预测方法[J]. 中国电力, 2022, 55(11): 149–154 LI Fengjun, WANG Lei, ZHAO Jian, et al. Short-term power prediction method of distributed photovoltaic based on weather fusion and LSTM network[J]. Electric Power, 2022, 55(11): 149–154 [11] 张雲钦, 程起泽, 蒋文杰, 等. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62–69 ZHANG Yunqin, CHENG Qize, JIANG Wenjie, et al. Photovoltaic power prediction model based on EMD-PCA-LSTM[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 62–69 [12] WANG S, WEI L F, ZENG L A. Ultra-short-term photovoltaic power prediction based on VMD-LSTM-RVM model[J]. IOP Conference Series:Earth and Environmental Science, 2021, 781(4): 042020. [13] 黄雨薇, 彭道刚, 姚峻, 等. 基于SSA和K均值的TD-BP神经网络超短期光伏功率预测[J]. 太阳能学报, 2021, 42(4): 229–238 HUANG Yuwei, PENG Daogang, YAO Jun, et al. Ultra-short-term photovoltaic power prediction using TD-BP neural network based on SSA and k-means[J]. Journal of solar energy, 2021, 42(4): 229–238 [14] 叶林, 裴铭, 路朋, 等. 基于天气分型的短期光伏功率组合预测方法[J]. 电力系统自动化, 2021, 45(1): 44–54 YE Lin, PEI Ming, LU Peng, et al. Combination forecasting method of short-term photovoltaic power based on weather classification[J]. Automation of Electric Power Systems, 2021, 45(1): 44–54 [15] 朱文立, 张利, 杨明, 等. 考虑日周期性影响的光伏功率爬坡事件非精确概率预测[J]. 电力系统自动化, 2019, 43(20): 31–38 ZHU Wenli, ZHANG Li, YANG Ming, et al. Imprecise probabilistic prediction of photovoltaic power ramp event considering daily periodic effect[J]. Automation of Electric Power Systems, 2019, 43(20): 31–38 [16] 梁志祥, 刘晓明, 牟颖, 等. 基于深度学习的新能源爬坡事件预测方法[J]. 山东大学学报(工学版), 2019, 49(5): 24–28 LIANG Zhixiang, LIU Xiaoming, MU Ying, et al. Prediction method of wind power and PV ramp event based on deep learning[J]. Journal of Shandong University (Engineering Science), 2019, 49(5): 24–28 [17] 崔明建, 孙元章, 柯德平. 基于原子稀疏分解和BP神经网络的风电功率爬坡事件预测[J]. 电力系统自动化, 2014, 38(12): 6–11, 26 CUI Mingjian, SUN Yuanzhang, KE Deping. Wind power ramp events forecasting based on atomic sparse decomposition and BP neural networks[J]. Automation of Electric Power Systems, 2014, 38(12): 6–11, 26 [18] 杨茂, 刘红柳. 超短期风电功率爬坡事件对风电功率实时预测误差的影响研究[J]. 太阳能学报, 2017, 38(3): 571–577 YANG Mao, LIU Hongliu. Study on the influence of ultra-short-term wind power climbing events on real-time prediction error of wind power[J]. Acta Energiae Solaris Sinica, 2017, 38(3): 571–577 [19] HOSSAIN M S, MAHMOOD H. Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast[J]. IEEE Access, 2020, 8: 172524–172533.
|