[1] PAN Eersheng, YUE Bo, LI Xuan, et al. Integration technology and practice for long-distance offshore wind power in China[J]. Energy Conversion and Economics, 2020, 1(1): 4–19. [2] 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(14): 3758–3771 CHI Yongning, LIANG Wei, ZHANG Zhankui, et al. An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36(14): 3758–3771 [3] 王锡凡, 卫晓辉, 宁联辉, 等. 海上风电并网与输送方案比较[J]. 中国电机工程学报, 2014, 34(31): 5459–5466 WANG Xifan, WEI Xiaohui, NING Lianhui, et al. Integration techniques and transmission schemes for off-shore wind farms[J]. Proceedings of the CSEE, 2014, 34(31): 5459–5466 [4] 王一凡, 赵成勇. 混合型风电场经MMC-HVDC送出系统的振荡模式分析[J]. 电力系统保护与控制, 2020, 48(9): 18–26 WANG Yifan, ZHAO Chengyong. Analysis of oscillation modes of a hybrid-based wind farm transmitted through MMC-HVDC[J]. Power System Protection and Control, 2020, 48(9): 18–26 [5] DAKIC J, CHEAH-MANE M, GOMIS-BELLMUNT O, et al. HVAC transmission system for offshore wind power plants including mid-cable reactive power compensation: optimal design and comparison to VSC-HVDC transmission[J]. IEEE Transactions on Power Delivery, 2021, 36(5): 2814–2824. [6] TANG Yingjie, ZHANG Zheren, XU Zheng. DRU based low frequency AC transmission scheme for offshore wind farm integration[J]. IEEE Transactions on Sustainable Energy, 2021, 12(3): 1512–1524. [7] RYNDZIONEK R, SIENKIEWICZ C. Evolution of the HVDC link connecting offshore wind farms to onshore power systems[J]. Energies, 2020, 13(8): 1914. [8] XIANG Xin, FAN Shiyuan, GU Yunjie, et al. Comparison of cost-effective distances for LFAC with HVAC and HVDC in their connections of offshore and remote onshore wind energy[J]. CSEE Journal of Power and Energy Systems, 2021, 7(5): 954–975. [9] 刘卫东, 李奇南, 王轩, 等. 大规模海上风电柔性直流输电技术应用现状和展望[J]. 中国电力, 2020, 53(7): 55–71 LIU Weidong, LI Qinan, WANG Xuan, et al. Application status and prospect of VSC-HVDC technology for large-scale offshore wind farms[J]. Electric Power, 2020, 53(7): 55–71 [10] 吕杰, 杨维稼, 黄玮, 等. 66 kV交流接入海上换流站方案的技术经济性[J]. 中国电力, 2020, 53(7): 72–79 LYU Jie, YANG Weijia, HUANG Wei, et al. Techno-economic of 66 kV AC connection solution for offshore wind power[J]. Electric Power, 2020, 53(7): 72–79 [11] 蔡旭, 施刚, 迟永宁, 等. 海上全直流型风电场的研究现状与未来发展[J]. 中国电机工程学报, 2016, 36(8): 2036–2048 CAI Xu, SHI Gang, CHI Yongning, et al. Present status and future development of offshore all-DC wind farm[J]. Proceedings of the CSEE, 2016, 36(8): 2036–2048 [12] 江道灼, 谷泓杰, 尹瑞, 等. 海上直流风电场研究现状及发展前景[J]. 电网技术, 2015, 39(9): 2424–2431 JIANG Daozhuo, GU Hongjie, YIN Rui, et al. Research status and developing prospect of offshore wind farm with pure DC systems[J]. Power System Technology, 2015, 39(9): 2424–2431 [13] MUSASA K, NWULU N, GITAU M, et al. Review on DC collection grids for offshore wind farms with high-voltage DC transmission system[J]. IET Power Electronics, 2017, 10(15): 2104–2115. [14] 郭灵瑜, 姚钢, 周荔丹. 全直流海上风电场高升压比DC/DC变换技术综述[J]. 电力系统保护与控制, 2018, 46(12): 158–169 GUO Lingyu, YAO Gang, ZHOU Lidan. Research review on high step-up ratio DC/DC converter for offshore DC wind farm[J]. Power System Protection and Control, 2018, 46(12): 158–169 [15] 王新颖, 汤广福, 魏晓光, 等. MMC-HVDC输电网用高压DC/DC变换器隔离需求探讨[J]. 电力系统自动化, 2017, 41(8): 172–178 WANG Xinying, TANG Guangfu, WEI Xiaoguang, et al. Discussion on isolation requirement of high voltage DC/DC converter for MMC-HVDC transmission systems[J]. Automation of Electric Power Systems, 2017, 41(8): 172–178 [16] PÁEZ J, FREY D, MANEIRO J, et al. Overview of DC–DC converters dedicated to HVDC grids[J]. IEEE Transactions on Power Delivery, 2019, 34(1): 119–128. [17] 韩鸣宇, 左文平, 周猛, 等. 适用于直流电网的推挽式直流自耦变压器及其控制策略[J]. 智慧电力, 2021, 49(2): 15–22 HAN Mingyu, ZUO Wenping, ZHOU Meng, et al. Push-pull type DC autotransformer and its control strategy suitable for DC power grid[J]. Smart Power, 2021, 49(2): 15–22 [18] 石绍磊, 李彬彬, 张毅, 等. 模块化多电平型高压 DC/DC 变换器的研究[J]. 电源学报, 2015, 13(6): 110–116,123 SHI Shaolei, LI Binbin, ZHANG Yi, et al. Research on modular multilevel high voltage DC/DC converter[J]. Journal of Power Supply, 2015, 13(6): 110–116,123 [19] LÜTH T, MERLIN M, GREEN T, et al. High-frequency operation of a DC/AC/DC system for HVDC applications[J]. IEEE Transactions on Power Electronics, 2014, 29(8): 4107–4115. [20] 林卫星, 文劲宇, 程时杰. 直流–直流自耦变压器[J]. 中国电机工程学报, 2014, 34(36): 6515–6522 LIN Weixing, WEN Jinyu, CHENG Shijie. DC-DC autotransformer[J]. Proceedings of the CSEE, 2014, 34(36): 6515–6522 [21] LIN Weixing. DC–DC autotransformer with bidirectional DC fault isolating capability[J]. IEEE Transactions on Power Electronics, 2016, 31(8): 5400–5410. [22] LI Binbin, LIU Jianying, WANG Zhiyuan, et al. Modular high-power DC–DC converter for MVDC renewable energy collection systems[J]. IEEE Transactions on Industrial Electronics, 2021, 68(7): 5875–5886. [23] SHI X, FILIZADEH S, GOLE A. Capacitor energy storage requirements in mixed-submodule hybrid cascaded MMCs[J]. IEEE Transactions on Energy Conversion, 2020, 35(3): 1638–1647. [24] 徐政. 柔性直流输电系统[M]. 2版. 北京: 机械工业出版社, 2018. [25] 于飞, 王子豪, 刘喜梅. 新型模块化多电平换流器的设计与应用[J]. 电力系统保护与控制, 2022, 50(1): 69–77 YU Fei, WANG Zihao, LIU Ximei. A gradationally controlled modular multilevel converter and its application[J]. Power System Protection and Control, 2022, 50(1): 69–77 [26] 张哲任, 唐英杰, 徐政. 采用中频不控整流直流系统的远海风电送出方案[J]. 中国电力, 2020, 53(7): 80–91 ZHANG Zheren, TANG Yingjie, XU Zheng. Medium frequency diode rectifier unit based HVDC transmission for offshore wind farm integration[J]. Electric Power, 2020, 53(7): 80–91 [27] Search engine for electronic components and industrial products [EB/OL]. (2021-07-02)[2021-08-10].https://octopart.com. [28] LI Zhengxuan, SONG Qiang, AN Feng, et al. Review on DC transmission systems for integrating large-scale offshore wind farms[J]. Energy Conversion and Economics, 2021, 2(1): 1–14.
|