[1] 张伯明, 陈寿孙. 高等电力网络分析[M]. 北京: 清华大学出版社, 1996. [2] KABALAN M, SINGH P, NIEBUR D. Large signal Lyapunov-based stability studies in microgrids: a review[J]. IEEE Transactions on Smart Grid, 2017, 8(5): 2287–2295. [3] 徐文斌, 周宇飞, 薛诚. 多模块并联逆变器的等效变换和稳定性分析[J]. 电测与仪表, 2021, 58(1): 91–95 XU Wenbin, ZHOU Yufei, XUE Cheng. Equivalent transformation and stability analysis of multi-module parallel inverters[J]. Electrical Measurement & Instrumentation, 2021, 58(1): 91–95 [4] 郭贤珊, 刘斌, 梅红明, 等. 渝鄂直流背靠背联网工程交直流系统谐振分析与抑制[J]. 电力系统自动化, 2020, 44(20): 157–164 GUO Xianshan, LIU Bin, MEI Hongming, et al. Analysis and suppression of resonance between AC and DC systems in Chongqing-Hubei back-to-back HVDC project of China[J]. Automation of Electric Power Systems, 2020, 44(20): 157–164 [5] 邢华栋, 张叔禹, 尹柏清, 等. 风电并网系统次同步振荡稳定性分析与控制方法研究综述[J]. 电测与仪表, 2020, 57(24): 13–21 XING Huadong, ZHANG Shuyu, YIN Baiqing, et al. Review of sub-synchronous oscillation stability analysis and control method for grid-connected wind power system[J]. Electrical Measurement & Instrumentation, 2020, 57(24): 13–21 [6] 孙谦浩, 李亚楼, 孟经伟, 等. 基于移相控制的高频链模块化多电平直流变压器分布式控制管理策略及轮换电容电压平衡方法[J]. 中国电机工程学报, 2018, 38(5): 1310–1318 SUN Qianhao, LI Yalou, MENG Jingwei, et al. Distributed control strategy and alternate modulation balance algorithm of high-frequency-link modular multilevel DC transformer based on phase-shifting principle[J]. Proceedings of the CSEE, 2018, 38(5): 1310–1318 [7] 余瑜, 刘开培, 杨洁, 等. 向无源网络供电的多端混合直流输电系统小信号模型及解耦控制[J]. 中国电机工程学报, 2016, 36(1): 76–86 YU Yu, LIU Kaipei, YANG Jie, et al. Small-signal modeling and decoupling control of hybrid multi-terminal HVDC system[J]. Proceedings of the CSEE, 2016, 36(1): 76–86 [8] 韩悌, 柯贤波, 霍超, 等. 多直流、高占比新能源电力系统应对严重扰动新技术研究[J]. 智慧电力, 2020, 48(4): 9–14, 27 HAN Ti, KE Xianbo, HUO Chao, et al. New technology coping with serious disturbance in power system with multiple DC and high ratio new energy[J]. Smart Power, 2020, 48(4): 9–14, 27 [9] 孙谦浩, 李亚楼, 王静, 等. 基于钳位开关电容的高频模块化直流变压器[J]. 中国电机工程学报, 2020, 40(11): 3633–3643 SUN Qianhao, LI Yalou, WANG Jing, et al. High-frequency modular DC transformer based on clamping switched capacitors[J]. Proceedings of the CSEE, 2020, 40(11): 3633–3643 [10] 林其友, 蒋文良, 李媛媛, 等. 基于母线电压分层的直流微网系统协调控制[J]. 中国电力, 2022, 55(2): 166–171,180 LIN Qiyou, JIANG Wenliang, LI Yuanyuan, et al. Coordinated control of DC microgrid system based on bus voltage stratification[J]. Electric Power, 2022, 55(2): 166–171,180 [11] 鲁宗相, 汤海雁, 乔颖, 等. 电力电子接口对电力系统频率控制的影响综述[J]. 中国电力, 2018, 51(1): 51–58 LU Zongxiang, TANG Haiyan, QIAO Ying, et al. The impact of power electronics interfaces on power system frequency control: a review[J]. Electric Power, 2018, 51(1): 51–58 [12] 陈思源, 景巍巍, 史明明, 等. 新能源接入背景下的谐波源建模方法综述[J]. 电力系统保护与控制, 2022, 50(7): 162–175 CHEN Siyuan, JING Weiwei, SHI Mingming, et al. Review of harmonic source modeling methods with the background of renewable energy access[J]. Power System Protection and Control, 2022, 50(7): 162–175 [13] 姜齐荣, 王亮, 谢小荣. 电力电子化电力系统的振荡问题及其抑制措施研究[J]. 高电压技术, 2017, 43(4): 1057–1066 JIANG Qirong, WANG Liang, XIE Xiaorong. Study on oscillations of power-electronized power system and their mitigation schemes[J]. High Voltage Engineering, 2017, 43(4): 1057–1066 [14] 孙谦浩, 李亚楼, 宋强, 等. 基于桥臂基波平均开关函数的MMC模型在直流电网仿真中的应用[J]. 电力自动化设备, 2018, 38(8): 24–30 SUN Qianhao, LI Yalou, SONG Qiang, et al. Application of MMC model based on arm fundamental wave average switching function in DC grid simulation[J]. Electric Power Automation Equipment, 2018, 38(8): 24–30 [15] JIANG J B, LIU F, PAN S Z, et al. A conservatism-free large signal stability analysis method for DC microgrid based on mixed potential theory[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 11342–11351. [16] 杜东冶, 郭春义, 贾秀芳, 等. 基于附加带阻滤波器的模块化多电平换流器高频谐振抑制策略[J]. 电工技术学报, 2021, 36(7): 1516–1525 DU Dongye, GUO Chunyi, JIA Xiufang, et al. Suppression strategy for high frequency resonance of modular multilevel converter based on additional band-stop filter[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1516–1525 [17] HOLLMAN J A, MARTI J R. Step-by-step eigenvalue analysis with EMTP discrete-time solutions[J]. IEEE Transactions on Power Systems, 2010, 25(3): 1220–1231. [18] 于亚男, 金阳忻, 江全元, 等. 基于RT-LAB的柔性直流配电网建模与仿真分析[J]. 电力系统保护与控制, 2015, 43(19): 125–130 YU Yanan, JIN Yangxin, JIANG Quanyuan, et al. RT-LAB based modeling and simulation analysis of flexible DC distribution network[J]. Power System Protection and Control, 2015, 43(19): 125–130 [19] 刘文君, 董明, 徐元孚, 等. 电力设备运行状态大数据标签体系与关键技术[J]. 中国电力, 2022, 55(1): 126–132 LIU Wenjun, DONG Ming, XU Yuanfu, et al. Structure and key technologies of big data labeling system for power equipment operation status[J]. Electric Power, 2022, 55(1): 126–132 [20] 郭永明, 游晓科, 刘观起. 基于灵敏度分析的直驱永磁风机并网系统小干扰稳定优化研究[J]. 中国电力, 2017, 50(2): 144–149 GUO Yongming, YOU Xiaoke, LIU Guanqi. Small signal stability optimal designing of direct-driven permanent magnet wind power system based on sensitivity analysis method[J]. Electric Power, 2017, 50(2): 144–149 [21] 柳勇军. 电力系统机电暂态和电磁暂态混合仿真技术的研究[D]. 北京: 清华大学, 2006. LIU Yongjun. Study on power system electromechanical transient and electromagnetic transient hybrid simulation[D]. Beijing: Tsinghua University, 2006. [22] 董毅峰, 王彦良, 韩佶, 等. 电力系统高效电磁暂态仿真技术综述[J]. 中国电机工程学报, 2018, 38(8): 2213–2231,2532 DONG Yifeng, WANG Yanliang, HAN Ji, et al. Review of high efficiency digital electromagnetic transient simulation technology in power system[J]. Proceedings of the CSEE, 2018, 38(8): 2213–2231,2532 [23] 李高望, 陈锐智, 陈艳波. 考虑网络划分优化的交直流系统并行电磁暂态仿真研究[J]. 电力系统保护与控制, 2021, 49(4): 72–80 LI Gaowang, CHEN Ruizhi, CHEN Yanbo. Research on parallel electromagnetic transient simulation of an AC-DC system considering optimization of network division[J]. Power System Protection and Control, 2021, 49(4): 72–80 [24] 李笑倩 . 基于MMC的高压大容量柔性直流输电关键技术研究[D]. 北京: 清华大学, 2015. LI Xiaoqian. Research on key technologies of high voltage and high power HVDC based on modular multilevel converter [D]. Beijing: Tsinghua University, 2015. [25] 韩应生, 孙海顺, 黄碧月, 等. 基于多类型电力元件统一形式离散模型的复杂系统状态空间生成方法[J]. 中国电机工程学报, 2021, 41(18): 6137–6148 HAN Yingsheng, SUN Haishun, HUANG Biyue, et al. A state space construction method for complex power systems based on the unified-form discrete-time models of multiple types of power components[J]. Proceedings of the CSEE, 2021, 41(18): 6137–6148
|