中国电力 ›› 2024, Vol. 57 ›› Issue (1): 123-132.DOI: 10.11930/j.issn.1004-9649.202308071
马喜平(), 李亚昕(
), 梁琛(
), 董晓阳(
), 徐瑞(
)
收稿日期:
2023-11-01
出版日期:
2024-01-28
发布日期:
2024-01-23
作者简介:
马喜平(1987—),男,通信作者,高级工程师,从事新能源并网技术研究,E-mail:maxpgs@163.com基金资助:
Xiping MA(), Yaxin LI(
), Chen LIANG(
), Xiaoyang DONG(
), Rui XU(
)
Received:
2023-11-01
Online:
2024-01-28
Published:
2024-01-23
Supported by:
摘要:
为了挖掘高比例分布式资源接入背景下配电网全方位多角度无功调控降损潜力,实现更为全面精细的无功优化技术降损目标,提出考虑多元可调节资源协调互动的多目标配电网无功优化降损方法。首先,针对高比例分布式资源接入背景下谐波对线损的影响,给出了考虑谐波损耗的配电网线损计算模型;其次,在此基础上分析多元可调节资源无功调节能力,建立了以日线损最低和静态电压稳定性最大为目标的配电网无功优化调度模型;然后,通过制定多元可调节负荷、分布式电源、储能、无功补偿设备等多元分布式资源协同无功优化策略,达到在综合考虑配电网静态电压稳定性要求下系统线损最小的目的;最后,通过多元分布式资源接入的IEEE 33节点进行系统仿真分析,结果表明通过多元可调节资源的充分互动能够有效提高系统电压稳定性,降低系统线损,实现配电网安全、经济运行。
中图分类号:
马喜平, 李亚昕, 梁琛, 董晓阳, 徐瑞. 考虑高比例多元调节资源互动的配电网无功优化降损方法[J]. 中国电力, 2024, 57(1): 123-132.
Xiping MA, Yaxin LI, Chen LIANG, Xiaoyang DONG, Rui XU. Reactive Power Optimization for Loss Reduction of Distribution Network Considering Interactions of High Penetration Level of Multiple Regulating Energy Resources[J]. Electric Power, 2024, 57(1): 123-132.
设备类型 | 内容 | 数值 | ||
分布式光伏电源 | 节点3光伏电源额定功率/kW | 600 | ||
节点12光伏电源额定功率/kW | 820 | |||
节点29光伏电源额定功率/kW | 820 | |||
并联电容器组 | 总容量/(kV·A) | 10×20组×3 | ||
储能设备群 | 最大充放电功率/kW | 540 | ||
充放电效率 | 0.9 | |||
额定容量/(kW·h) | 900 |
表 1 算例主要参数
Table 1 The main parameters of the case
设备类型 | 内容 | 数值 | ||
分布式光伏电源 | 节点3光伏电源额定功率/kW | 600 | ||
节点12光伏电源额定功率/kW | 820 | |||
节点29光伏电源额定功率/kW | 820 | |||
并联电容器组 | 总容量/(kV·A) | 10×20组×3 | ||
储能设备群 | 最大充放电功率/kW | 540 | ||
充放电效率 | 0.9 | |||
额定容量/(kW·h) | 900 |
负荷类型 | 设备数量/台 | 单台额定功率/kW | ||
可中断负荷 | 20 | 10.0 | ||
可时移负荷 | 67 | 3.0 | ||
可削减负荷 | 118 | 2.2 |
表 2 可调控负荷相关参数
Table 2 Related parameters of adjustable load
负荷类型 | 设备数量/台 | 单台额定功率/kW | ||
可中断负荷 | 20 | 10.0 | ||
可时移负荷 | 67 | 3.0 | ||
可削减负荷 | 118 | 2.2 |
变量 | 数值 | |||||||||||||
接入容量/kW | 140 | 420 | 700 | 1400 | 2240 | 2520 | 2800 | |||||||
接入占比/% | 5 | 15 | 25 | 50 | 80 | 90 | 100 | |||||||
日线损电量/(kW·h) | 731 | 648 | 600 | 585 | 625 | 748 | 1014 | |||||||
谐波日线损电量/(kW·h) | 0.24 | 1.38 | 4.11 | 20.4 | 33.6 | 60.3 | 105.0 | |||||||
谐波损耗占总线损比例/% | 0.03 | 0.21 | 0.69 | 3.51 | 5.32 | 8.06 | 10.36 |
表 3 光伏接入容量以及对应的谐波线损
Table 3 PV access capacity and corresponding harmonic line losses
变量 | 数值 | |||||||||||||
接入容量/kW | 140 | 420 | 700 | 1400 | 2240 | 2520 | 2800 | |||||||
接入占比/% | 5 | 15 | 25 | 50 | 80 | 90 | 100 | |||||||
日线损电量/(kW·h) | 731 | 648 | 600 | 585 | 625 | 748 | 1014 | |||||||
谐波日线损电量/(kW·h) | 0.24 | 1.38 | 4.11 | 20.4 | 33.6 | 60.3 | 105.0 | |||||||
谐波损耗占总线损比例/% | 0.03 | 0.21 | 0.69 | 3.51 | 5.32 | 8.06 | 10.36 |
变量 | 谐波次数 | |||||||||||
5 | 7 | 11 | 13 | 17 | 19 | |||||||
谐波总损耗/(kW·h) | 33.6 | |||||||||||
各次谐波损耗/(kW·h) | 15.3 | 8.6 | 4.1 | 3.1 | 2.1 | 0.5 | ||||||
各次损耗占总损耗比例/% | 45.4 | 25.7 | 12.1 | 9.1 | 6.2 | 1.5 |
表 4 谐波损耗占谐波总损耗比例
Table 4 Proportion of harmonic losses in the total harmonic losses
变量 | 谐波次数 | |||||||||||
5 | 7 | 11 | 13 | 17 | 19 | |||||||
谐波总损耗/(kW·h) | 33.6 | |||||||||||
各次谐波损耗/(kW·h) | 15.3 | 8.6 | 4.1 | 3.1 | 2.1 | 0.5 | ||||||
各次损耗占总损耗比例/% | 45.4 | 25.7 | 12.1 | 9.1 | 6.2 | 1.5 |
变量 | 优化前 | 优化后 | ||
Wloss/(kW·h) | 829.180 | 662.620 | ||
Lzb | 0.200 | 0.157 |
表 5 配电网线损和L指标变化情况
Table 5 Changes of distribution network line losses and L indicators
变量 | 优化前 | 优化后 | ||
Wloss/(kW·h) | 829.180 | 662.620 | ||
Lzb | 0.200 | 0.157 |
1 |
马喜平, 贾嵘, 梁琛, 等. 高比例新能源接入下电力系统降损研究综述[J]. 电网技术, 2022, 46 (11): 4305- 4315.
DOI |
MA Xiping, JIA Rong, LIANG Chen, et al. Review of researches on loss reduction in context of high penetration of renewable power generation[J]. Power System Technology, 2022, 46 (11): 4305- 4315.
DOI |
|
2 | 王博, 杨德友, 蔡国伟. 高比例新能源接入下电力系统惯量相关问题研究综述[J]. 电网技术, 2020, 44 (8): 2998- 3007. |
WANG Bo, YANG Deyou, CAI Guowei. Review of research on power system inertia related issues in the context of high penetration of renewable power generation[J]. Power System Technology, 2020, 44 (8): 2998- 3007. | |
3 | 王继飞, 王永星, 杨宇静, 等. 光伏电站并入农配网对地区电网的影响[J]. 中国电力, 2018, 51 (6): 150- 154. |
WANG Jifei, WANG Yongxing, YANG Yujing, et al. Analysis the impact of photovoltaic power station's integration into rural distribution network[J]. Electric Power, 2018, 51 (6): 150- 154. | |
4 | 杨亘烨, 孙荣富, 丁然, 等. 计及光伏多状态调节能力的配电网多时间尺度电压优化[J]. 中国电力, 2022, 55 (3): 105- 114. |
YANG Genye, SUN Rongfu, DING Ran, et al. Multi time scale reactive power and voltage optimization of distribution network considering photovoltaic multi state regulation capability[J]. Electric Power, 2022, 55 (3): 105- 114. | |
5 | 王杰, 王维庆, 王海云, 等. 考虑越限风险的主动配电网中DG、SOP与ESS的两阶段协调规划[J]. 电力系统保护与控制, 2022, 50 (24): 71- 82. |
WANG Jie, WANG Weiqing, WANG Haiyun, et al. Two-stage coordinated planning of DG, SOP and ESS in an active distribution network considering violation risk[J]. Power System Protection and Control, 2022, 50 (24): 71- 82. | |
6 | 王葵, 李建超, 蒋丽, 等. 谐波电流对低压配电网的影响分析[J]. 继电器, 2008, (7): 24- 28. |
WANG Kui, LI Jianchao, JIANG Li, et al. Infuence analysis of harmonic current on low-voltage distribution power system[J]. Relay, 2008, (7): 24- 28. | |
7 |
张立梅, 唐巍, 赵云军, 等. 分布式发电接入配电网后对系统电压及损耗的影响分析[J]. 电力系统保护与控制, 2011, 39 (5): 91- 96.
DOI |
ZHANG Limei, TANG Wei, ZHAO Yunjun, et al. Analysis of DG influences on system voltage and losses in distribution network[J]. Power System Protection and Control, 2011, 39 (5): 91- 96.
DOI |
|
8 | 张龙. 分布式光伏并网对临城地区电网谐波影响及对策[D]. 保定: 华北电力大学(保定), 2018. |
ZHANG Long. Distributed grid-connected photovoltaic research on the harmonic influence of power grid and countermeasures in Lincheng area[D]. Baoding: North China Electric Power University(Baoding), 2018. | |
9 |
崔威, 李建华, 赵娟. 供电网络谐波潮流计算[J]. 电力自动化设备, 2003, 23 (2): 11- 14.
DOI |
CUI Wei, LI Jianhua, ZHAO Juan. Harmonic flow calculation in power supply system[J]. Electric Power Automation Equipment, 2003, 23 (2): 11- 14.
DOI |
|
10 |
金标, 余一平, 樊陈, 等. 基于宽频量测间谐波潮流计算的次/超同步振荡溯源方法[J]. 电力自动化设备, 2022, 42 (8): 221- 228.
DOI |
JIN Biao, YU Yiping, FAN Chen, et al. Tracing method of sub-/ super-synchronous oscillation based on interharmonic power flow calculation of wide frequency measurement[J]. Electric Power Automation Equipment, 2022, 42 (8): 221- 228.
DOI |
|
11 |
邵振国, 汤炜坤, 张嫣, 等. 基于海森矩阵的仿射谐波潮流保守性优化[J]. 电力自动化设备, 2021, 41 (1): 172- 178.
DOI |
SHAO Zhenguo, TANG Weikun, ZHANG Yan, et al. Conservation optimization of affine harmonic power flow based on Hessian matrix[J]. Electric Power Automation Equipment, 2021, 41 (1): 172- 178.
DOI |
|
12 |
林金榕, 张逸, 李传栋, 等. 基于矩阵范型的配电网三相谐波潮流算法[J]. 电力自动化设备, 2022, 42 (4): 165- 171.
DOI |
LIN Jinrong, ZHANG Yi, LI Chuandong, et al. Three-phase harmonic power flow algorithm of distribution network based on matrix paradigm[J]. Electric Power Automation Equipment, 2022, 42 (4): 165- 171.
DOI |
|
13 |
陈智勇, 罗安, 黄旭程, 等. 基于欧拉公式的宽频谐波谐振稳定性评估法[J]. 中国电机工程学报, 2020, 40 (5): 1509- 1522.
DOI |
CHEN Zhiyong, LUO An, HUANG Xucheng, et al. Euler's formula-based stability assessment for wideband harmonic resonances[J]. Proceedings of the CSEE, 2020, 40 (5): 1509- 1522.
DOI |
|
14 |
吴国沛, 王武, 张勇军, 等. 含光储系统的增量配电网时段解耦动态拓展无功优化[J]. 电力系统保护与控制, 2019, 47 (9): 173- 179.
DOI |
WU Guopei, WANG Wu, ZHANG Yongjun, et al. Time decoupled dynamic extended reactive power optimization in incremental distribution network with photovoltaic-energy storage hybrid system[J]. Power System Protection and Control, 2019, 47 (9): 173- 179.
DOI |
|
15 | 张杰, 王恒凤, 刘生春, 等. 基于内点法和邻域搜索解耦动态规划法的区域电网动态无功优化方法[J]. 中国电力, 2023, 56 (2): 59- 67. |
ZHANG Jie, WANG Hengfeng, LIU Shengchun, et al. Algorithm for dynamic reactive power optimization of regional power grid based on interior point method and neighborhood search decoupling dynamic programming method[J]. Electric Power, 2023, 56 (2): 59- 67. | |
16 | 田宇, 黄婧, 谢枭, 等. 主动配电网无功补偿和OLTC鲁棒多目标优化配置[J]. 中国电力, 2023, 56 (3): 94- 99. |
TIAN Yu, HUANG Jing, XIE Xiao, et al. Multi-objective optimal allocation of reactive compensation and OLTC in active distribution network[J]. Electric Power, 2023, 56 (3): 94- 99. | |
17 |
张倩, 丁津津, 张道农, 等. 基于集群划分的高渗透率分布式系统无功优化[J]. 电力系统自动化, 2019, 43 (3): 130- 137.
DOI |
ZHANG Qian, DING Jinjin, ZHANG Daonong, et al. Reactive power optimization of high-penetration distributed generation system based on clusters partition[J]. Automation of Electric Power Systems, 2019, 43 (3): 130- 137.
DOI |
|
18 |
姜凤利, 张鑫, 王俊, 等. 多负荷水平下含风电接入的配电网无功优化[J]. 中国电力, 2017, 50 (3): 137- 142.
DOI |
JIANG Fengli, ZHANG Xin, WANG Jun, et al. Reactive power optimization of distribution system integrated with wind power under multiple load levels[J]. Electric Power, 2017, 50 (3): 137- 142.
DOI |
|
19 | 姚蓝霓, 李钦豪, 杨景旭, 等. 考虑电动汽车充放电支撑的配用电系统综合无功优化[J]. 电力系统自动化, 2022, 46 (6): 39- 47. |
YAO Lanni, LI Qinhao, YANG Jingxu, et al. Comprehensive reactive power optimization of power distribution and consumption system with support of electric vehicle charging and discharging[J]. Automation of Electric Power Systems, 2022, 46 (6): 39- 47. | |
20 |
寇凌峰, 吴鸣, 李洋, 等. 主动配电网分布式有功无功优化调控方法[J]. 中国电机工程学报, 2020, 40 (6): 1856- 1865.
DOI |
KOU Lingfeng, WU Ming, LI Yang, et al. Optimization and control method of distributed active and reactive power in active distribution network[J]. Proceedings of the CSEE, 2020, 40 (6): 1856- 1865.
DOI |
|
21 | 孙国强, 殷岩岩, 卫志农, 等. 基于深度确定性策略梯度的主动配电网有功-无功协调优化调度[J]. 电力建设, 2023, 44 (11): 33- 42. |
SUN Guoqiang, YIN Yanyan, WEI Zhinong, et al. Coordinated optimal dispatch of active and reactive power in active distribution networks using deep deterministic strategy gradient[J]. Electric Power Construction, 2023, 44 (11): 33- 42. | |
22 |
胡珺如, 窦晓波, 李晨, 等. 面向中低压配电网的分布式协同无功优化策略[J]. 电力系统自动化, 2021, 45 (22): 47- 54.
DOI |
HU Junru, DOU Xiaobo, LI Chen, et al. Distributed cooperative reactive power optimization strategy for medium-and low-voltage distribution network[J]. Automation of Electric Power Systems, 2021, 45 (22): 47- 54.
DOI |
|
23 | 乔立同, 汪挺, 刘剑宁, 等. 考虑源网荷储协调互动的配电网无功优化[J/OL]. 电测与仪表: 1–7[2023-10-20]. http://kns.cnki.net/kcms/detail/23.1202.TH.20211223.1957.006.html. |
QIAO Litong, WANG Ting, LIU Jianning, et al. Distribution network reactive power optimization considering generation network load storage interaction[J]. Electrical Measurement & Instrumentation: 1–7[2023-10-20]. http://kns.cnki.net/kcms/detail/23.1202.TH.20211223.1957.006.html. | |
24 | 姜涛, 李国庆, 贾宏杰, 等. 电压稳定在线监控的简化L指标及其灵敏度分析方法[J]. 电力系统自动化, 2012, 36 (21): 13- 18. |
JIANG Tao, LI Guoqing, JIA Hongjie, et al. Simplified L-index and its sensitivity analysis method for on-line monitoring of voltage stability control[J]. Automation of Electric Power Systems, 2012, 36 (21): 13- 18. | |
25 |
陈静, 伍军, 郑金华. 一种改进的非支配排序多目标遗传算法[J]. 计算机工程与应用, 2009, 45 (29): 60- 63, 71.
DOI |
CHEN Jing, WU Jun, ZHENG Jinhua. Improved non-dominated sorting genetic algorithm for multi-objective optimization[J]. Computer Engineering and Applications, 2009, 45 (29): 60- 63, 71.
DOI |
[1] | 翟苏巍, 李银银, 杜凡, 李文云, 潘凯岩, 梁峻恺. 考虑海量分布式能源接入的配电网分布式无功控制策略[J]. 中国电力, 2024, 57(8): 138-144. |
[2] | 覃海, 陈胜, 张洪略, 夏天, 马覃峰, 段展宇, 颜伟. 并网光伏电站关口无功调节能力的分时段等值方法[J]. 中国电力, 2024, 57(2): 27-33. |
[3] | 张杰, 郑云耀, 刘生春, 马勇飞, 颜伟, 王恒凤. 基于解耦内点法与混合整数规划法的区域电网动态无功优化算法[J]. 中国电力, 2023, 56(1): 112-118. |
[4] | 茹秋实, 米雪峰, 宋志刚, 刘金涛, 雷霞. 考虑储能-智能软开关的主动配电网混合时间尺度鲁棒优化[J]. 中国电力, 2022, 55(9): 129-139. |
[5] | 杨亘烨, 孙荣富, 丁然, 徐海翔, 陈璨, 吴林林, 陈奇芳, 夏明超. 计及光伏多状态调节能力的配电网多时间尺度电压优化[J]. 中国电力, 2022, 55(3): 105-114. |
[6] | 安然, 吴俊勇, 石琛, 朱孝文, 邵美阳, 黄杏, 蔡蓉. 基于随机矩阵和历史场景匹配的配电网无功优化[J]. 中国电力, 2020, 53(4): 69-78. |
[7] | 曹生让, 丁晓群, 王庆燕, 张静. 基于反向云自适应粒子群算法的多目标无功优化[J]. 中国电力, 2018, 51(7): 21-27. |
[8] | 吕守旭. 基于大数据分析的智能电网降损效果估计模型仿真[J]. 中国电力, 2017, 50(4): 172-175. |
[9] | 杨文海, 黄玲玉, 程华新, 李瑞环, 王敬敏. 适用于不同随机变量的主动配电网拉丁超立方抽样法概率谐波潮流计算[J]. 中国电力, 2017, 50(4): 59-65. |
[10] | 胡滨,王旭阳,侯佳. 智能变电站负荷自动分配技术[J]. 中国电力, 2016, 49(3): 104-109. |
[11] | 葛江北,周明,李庚银,丁蒙. 基于安全运行范围的风电场静态电压安全分析[J]. 中国电力, 2015, 48(3): 103-108. |
[12] | 孟安波,岳龙飞,邢林华,陈育成,李阳. 基于NW小世界的量子进化算法在无功优化中的研究[J]. 中国电力, 2015, 48(1): 107-114. |
[13] | 洪筱, 丁晓群, 杨海东, 黄恒硕. 基于IGSO计及谐波电压畸变的无功优化[J]. 中国电力, 2013, 46(2): 82-86. |
[14] | 于青, 韩学山, 杨思, 李文博. 计及风电的动态无功优化解耦算法[J]. 中国电力, 2013, 46(11): 52-56. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||