[1] 许波, 彭志平, 陈晓龙, 等.一种基于云模型的多目标简化算法[J]. 信息与控制, 2012, 41(3):326-332.XU Bo, PENG Zhiping, CHEN Xiaolong, et al. A multi-objective evolutionary algorithm based on cloud model[J]. Information and Control, 2012, 41(3):326-332.
[2] 公茂果, 焦李成, 杨咚咚. 进化多目标优化算法研究[J]. 软件学报, 2009, 20(2):217-289.GONG Maoguo, JIAO Licheng, YANG Dongdong. Research on evolutionary multi-objective optimization algorithms[J]. Journal of Software, 2009, 20(2):217-289.
[3] 张聪誉, 陈民铀, 罗辞勇, 等. 基于多目标粒子群算法的电力系统无功优化[J]. 电力系统保护与控制, 2010, 38(20):153-158.ZHANG Congyu, CHEN Minyou, LUO Ciyong, et al. Power system reactive power optimization based on multi-objective particle swarm algorithm[J]. Power System Protection and Control, 2010, 38(20):153-158.
[4] 张子泳, 仉梦林, 李莎. 基于多目标粒子群算法的电力系统环境经济调度研究[J]. 电力系统保护与控制, 2017, 45(10):1-9.ZHANG Ziyong, ZHANG Menglin, LI Sha. Environmental economic power dispatch based on multi-objective particle swarm constraint optimization algorithm[J]. Power System Protection and Control, 2017, 45(10):1-9.
[5] 陈前宇, 陈维荣, 戴朝华, 等. 基于改进PSO算法的电力系统无功优化[J]. 电力系统及其自动化学报, 2014, 26(2):8-13.CHEN Qianyu, CHEN Weirong, DAI Chaohua, et al. Reactive power optimization based on modified particle swarm optimization algorithm for power system[J]. Proceedings of the CSU-EPSA, 2014, 26(2):8-13.
[6] 王庆燕, 马宏忠, 曹生让. 多策略粒子群算法在磁悬浮承重装置中的应用[J]. 中国电机工程学报, 2014, 34(30):5416-5424.WANG Qingyan, MA Hongzhong, CAO Shengrang. A multi-strategy particle swarm optimization algorithm and its application on hybrid magnetic levitation[J]. Proceedings of the CSEE, 2014, 34(30):5416-5424.
[7] CAO Shengrang, DING Xiaoqun, WANG Qingyan, et al. Opposition-based improved PSO for optimal reactive power dispatch and voltage control[J]. Mathematical Problems in Engineering, 2015(1):1-8.
[8] 孟安波, 岳龙飞, 邢林华, 等. 基于NW小世界的量子进化算法在无功优化中的研究[J]. 中国电力, 2015, 48(1):107-114.MENG Anbo, YUE Longfei, XING Linhua, et al. Research on reactive power optimization using quantum evolutionary algorithm based on NW small world model[J]. Electric Power, 2015, 48(1):107-114.
[9] 李珂, 邰能灵, 张沈习. 基于改进粒子群算法的配电网综合运行优化[J]. 上海交通大学学报, 2017, 51(8):898-902.LI Ke, TAI Nengling, ZHANG Shenxi. Comprehen-sive optimal dispatch of distribution network based on improved particle swarm optimization algorithm[J]. Joutnal of Shanghai Jiao Tong University, 2017, 51(8):898-902.
[10] 苏适, 周立栋, 陆海, 等.基于改进混沌粒子群算法的多源独立微网多目标优化方法[J]. 电力系统保护与控制, 2017, 45(23):34-41.SU Shi, ZHOU Lidong, LU Hai, et al. Multi-objective optimization method of multi-source independent microgrid based on modified CPSO[J]. Power System Protection and Control, 2017, 45(23):34-41.
[11] LOPES H S, COELHO L S. Particle swarm optimization with fast local search for the blind traveling salesman problem[C]//Proceedings of Fifth International Conference on Hybrid Intelligent Systems, 2005:245-250.
[12] WANG Jian, XU Chuanpei. Study on test generation of sequential circuits based on particle swarm optimization and ant algorithm[J]. Computer Science and Software Engineering, 2008, 5727(4):149-152.
[13] 陈光宇, 丁晓群, 边二曼. 一种基于混沌序列的动态差分进化算法在电力系统动态经济调度中的应用[J]. 中国电力, 2016, 49(6):101-111.CHEN Guangyu, DING Xiaoqun, BIAN Erman.Dynamic differential evolution algorithm based on chaotic sequences for dynamic economic dispatch problem of power system[J]. Electric Power, 2016, 49(6):101-111.
[14] WANG H, LI H, LIU Y, et al. Opposition-based particle swarm optimization algorithm with Cauchy mutation[C]//IEEE Congress on Evolutionary Computation, 2007:4750-4756.
[15] WANG L, CHEW C M, TAN K C. A multi-start opposition-based particle swarm optimization algorithm with adaptive velocity for bound constrained global optimization[J]. Journal of Global Optimization, 2013, 55(1):165-188.
[16] ROY P K, BHUI S. Multi-objective quasi-oppositional teaching learning based optimization for economic emission load dispatch problem[J]. International Journal of Electrical Power & Energy Systems, 2013, 53(4):937-948.
[17] TIZHOOSH H R. Opposition-based learning:A new scheme for machine intelligence[C]//Computational Intelligence for Modelling, Control and Automation, 2005 International Conference on Intelligent Agents, Web Technologies and Internet Commerce, International Conference on. IEEE, 2005, 1:695-701.
[18] 刘佳, 李丹, 高立群, 等. 多目标无功优化的向量评价自适应粒子群算法[J]. 中国电机工程学报, 2008, 28(31):22-28.LIU Jia, LI Dan, GAO Liqun, et al. Vector evaluated adaptive particle swarm optimization algorithm for multi-objective reactive power optimization[J]. Proceedings of the CSEE, 2008, 28(31):22-28.
[19] VLACHOGIANNIS J G, LEE K Y. Coordinated aggregation particle swarm optimization applied in reactive power and voltage control[C]//Proc. IEEE Power Engineering Society General Meeting, 2006:6.
[20] NIKNAM T, NARIMANI M R, AZIZIPANAH-ABARGHOOEE R, et al. Multiobjective optimal reactive power dispatch and voltage control:A new opposition-based self-adaptive modified gravitational search algorithm[J]. IEEE Systems Journal, 2013, 7(4):742-753. |