中国电力 ›› 2024, Vol. 57 ›› Issue (6): 181-192.DOI: 10.11930/j.issn.1004-9649.202306125
赵会茹1(), 姚满宇1(
), 李兵抗2(
), 谢光龙3(
), 丁智华4(
), 胡臻达5(
)
收稿日期:
2023-06-30
接受日期:
2024-01-04
出版日期:
2024-06-28
发布日期:
2024-06-25
作者简介:
赵会茹(1963—),女,博士,教授,从事电力产业经济与管理研究,E-mail:huiruzhao@163.com基金资助:
Huiru ZHAO1(), Manyu YAO1(
), Bingkang LI2(
), Guanglong XIE3(
), Zhihua DING4(
), Zhenda HU5(
)
Received:
2023-06-30
Accepted:
2024-01-04
Online:
2024-06-28
Published:
2024-06-25
Supported by:
摘要:
深入推进乡村振兴战略对农村电网发展提出更高要求,量化新时代农网项目贡献度,辅助农网实现精准投资成为关键。基于乡村振兴战略对现代农村电网发展提出的新要求,构建包含安全可靠、精准服务、绿色低碳、数字智能等4个维度的农网贡献度评价指标体系,采用最小交叉熵模型融合完全一致性方法(FUCOM)-变异系数法赋权系数对指标进行组合赋权,运用加权马氏距离TOPSIS法量化农网贡献度。以农网单位投资贡献度最优及财务效益最大为目标,构建农网项目投资决策模型,并基于c-DPEA算法进行求解。某县某批次20个农网项目的算例仿真结果表明,所提量化模型能科学评价农网项目贡献度,投资决策模型能为农网实现精准投资提供有效参考。
赵会茹, 姚满宇, 李兵抗, 谢光龙, 丁智华, 胡臻达. 考虑乡村振兴贡献度的农网项目投资决策模型[J]. 中国电力, 2024, 57(6): 181-192.
Huiru ZHAO, Manyu YAO, Bingkang LI, Guanglong XIE, Zhihua DING, Zhenda HU. Investment Decision Model of Rural Power Grid Projects Considering Contribution of Rural Revitalization[J]. Electric Power, 2024, 57(6): 181-192.
图 2 考虑乡村振兴贡献度的农网项目投资决策模型求解流程
Fig.2 The process of solving the investment decision model for agricultural network projects considering the contribution of rural revitalization
指标 | 指标 | 指标 | ||||||||
0.138 | 0.070 | 0.067 | ||||||||
0.112 | 0.112 | 0.047 | ||||||||
0.078 | 0.121 | 0.360 | ||||||||
0.106 | 0.113 |
表 1 基于FUCOM的指标赋权结果
Table 1 FUCOM-based indicator assignment results
指标 | 指标 | 指标 | ||||||||
0.138 | 0.070 | 0.067 | ||||||||
0.112 | 0.112 | 0.047 | ||||||||
0.078 | 0.121 | 0.360 | ||||||||
0.106 | 0.113 |
指标 | ||||||||
0.2232 | 0.0143 | 0.0640 | 0.0807 | |||||
0.2232 | 0.0146 | 0.0652 | 0.0822 | |||||
0.2227 | 0.0211 | 0.0948 | 0.1194 | |||||
0.2235 | 0.0061 | 0.0272 | 0.0343 | |||||
0.2231 | 0.0156 | 0.0697 | 0.0879 | |||||
0.2213 | 0.0331 | 0.1497 | 0.1887 | |||||
0.2211 | 0.0341 | 0.1543 | 0.1945 | |||||
0.2234 | 0.0109 | 0.0490 | 0.0617 | |||||
0.2234 | 0.0099 | 0.0444 | 0.0560 | |||||
0.2234 | 0.0090 | 0.0404 | 0.0509 | |||||
0.2235 | 0.0077 | 0.3470 | 0.4370 |
表 2 基于变异系数法的指标赋权结果
Table 2 Results of indicator weighting based on the coefficient of variation method
指标 | ||||||||
0.2232 | 0.0143 | 0.0640 | 0.0807 | |||||
0.2232 | 0.0146 | 0.0652 | 0.0822 | |||||
0.2227 | 0.0211 | 0.0948 | 0.1194 | |||||
0.2235 | 0.0061 | 0.0272 | 0.0343 | |||||
0.2231 | 0.0156 | 0.0697 | 0.0879 | |||||
0.2213 | 0.0331 | 0.1497 | 0.1887 | |||||
0.2211 | 0.0341 | 0.1543 | 0.1945 | |||||
0.2234 | 0.0109 | 0.0490 | 0.0617 | |||||
0.2234 | 0.0099 | 0.0444 | 0.0560 | |||||
0.2234 | 0.0090 | 0.0404 | 0.0509 | |||||
0.2235 | 0.0077 | 0.3470 | 0.4370 |
指标 类型 | 指标 | wi | 排序 | 组合 权重 | ||||
安全 可靠 | 农网供电可靠率预计提升程度 | 0.1089 | 3 | 0.3083 | ||||
户均配电容量预计提升程度 | 0.0991 | 5 | ||||||
农网综合电压合格率预计提升程度 | 0.0996 | 4 | ||||||
精准 服务 | 单位投资预计增供电量 | 0.0622 | 9 | 0.2972 | ||||
节能型配变比例预计提升程度 | 0.0808 | 7 | ||||||
农村电气化率预计提升程度 | 0.1501 | 2 | ||||||
绿色 低碳 | 可再生能源渗透率预计提升程度 | 0.1584 | 1 | 0.2424 | ||||
单位投资预计新增碳排放量 | 0.0862 | 6 | ||||||
数字 智能 | 智能终端覆盖率预计提升程度 | 0.0632 | 8 | 0.1521 | ||||
电力光纤长度比例预计提升程度 | 0.0505 | 10 | ||||||
智能变电站比率预计提升程度 | 0.0409 | 11 |
表 3 基于最小交叉熵模型的组合权重
Table 3 Combination weights based on the minimum cross-entropy model
指标 类型 | 指标 | wi | 排序 | 组合 权重 | ||||
安全 可靠 | 农网供电可靠率预计提升程度 | 0.1089 | 3 | 0.3083 | ||||
户均配电容量预计提升程度 | 0.0991 | 5 | ||||||
农网综合电压合格率预计提升程度 | 0.0996 | 4 | ||||||
精准 服务 | 单位投资预计增供电量 | 0.0622 | 9 | 0.2972 | ||||
节能型配变比例预计提升程度 | 0.0808 | 7 | ||||||
农村电气化率预计提升程度 | 0.1501 | 2 | ||||||
绿色 低碳 | 可再生能源渗透率预计提升程度 | 0.1584 | 1 | 0.2424 | ||||
单位投资预计新增碳排放量 | 0.0862 | 6 | ||||||
数字 智能 | 智能终端覆盖率预计提升程度 | 0.0632 | 8 | 0.1521 | ||||
电力光纤长度比例预计提升程度 | 0.0505 | 10 | ||||||
智能变电站比率预计提升程度 | 0.0409 | 11 |
项目序号 | 排名 | |||||||
4.526 | 4.022 | 0.5588 | 9 | |||||
4.705 | 4.266 | 0.5488 | 10 | |||||
4.628 | 3.929 | 0.5812 | 7 | |||||
3.745 | 5.177 | 0.3435 | 18 | |||||
3.681 | 5.023 | 0.3494 | 17 | |||||
4.470 | 4.590 | 0.4868 | 14 | |||||
4.140 | 4.698 | 0.4372 | 15 | |||||
4.570 | 4.340 | 0.5258 | 12 | |||||
3.664 | 5.073 | 0.3428 | 19 | |||||
4.672 | 4.018 | 0.5749 | 8 | |||||
4.795 | 4.038 | 0.5850 | 6 | |||||
5.391 | 3.546 | 0.6980 | 1 | |||||
5.024 | 3.737 | 0.6439 | 3 | |||||
5.025 | 3.590 | 0.6621 | 2 | |||||
4.238 | 4.092 | 0.5175 | 13 | |||||
4.027 | 4.821 | 0.4110 | 16 | |||||
5.093 | 4.082 | 0.6089 | 4 | |||||
4.939 | 3.992 | 0.6049 | 5 | |||||
3.479 | 5.246 | 0.3054 | 20 | |||||
4.376 | 4.120 | 0.5301 | 11 |
表 4 各农网项目的相对贴近度及排名
Table 4 Relative proximity and ranking of various agricultural network projects
项目序号 | 排名 | |||||||
4.526 | 4.022 | 0.5588 | 9 | |||||
4.705 | 4.266 | 0.5488 | 10 | |||||
4.628 | 3.929 | 0.5812 | 7 | |||||
3.745 | 5.177 | 0.3435 | 18 | |||||
3.681 | 5.023 | 0.3494 | 17 | |||||
4.470 | 4.590 | 0.4868 | 14 | |||||
4.140 | 4.698 | 0.4372 | 15 | |||||
4.570 | 4.340 | 0.5258 | 12 | |||||
3.664 | 5.073 | 0.3428 | 19 | |||||
4.672 | 4.018 | 0.5749 | 8 | |||||
4.795 | 4.038 | 0.5850 | 6 | |||||
5.391 | 3.546 | 0.6980 | 1 | |||||
5.024 | 3.737 | 0.6439 | 3 | |||||
5.025 | 3.590 | 0.6621 | 2 | |||||
4.238 | 4.092 | 0.5175 | 13 | |||||
4.027 | 4.821 | 0.4110 | 16 | |||||
5.093 | 4.082 | 0.6089 | 4 | |||||
4.939 | 3.992 | 0.6049 | 5 | |||||
3.479 | 5.246 | 0.3054 | 20 | |||||
4.376 | 4.120 | 0.5301 | 11 |
模型 | 指标赋权方法 | 综合评价方法 | ||
1 | 最小交叉熵模型融合FUCOM-变异系数法 | 加权马氏TOPSIS | ||
2 | FOCUM | 加权马氏TOPSIS | ||
3 | 变异系数法 | 加权马氏TOPSIS |
表 5 对比模型基本信息
Table 5 Basic information of comparative models
模型 | 指标赋权方法 | 综合评价方法 | ||
1 | 最小交叉熵模型融合FUCOM-变异系数法 | 加权马氏TOPSIS | ||
2 | FOCUM | 加权马氏TOPSIS | ||
3 | 变异系数法 | 加权马氏TOPSIS |
项目序号 | 贡献度排名 | |||||
模型1 | 模型2 | 模型3 | ||||
9 | 12 | 10 | ||||
10 | 11 | 12 | ||||
7 | 16 | 11 | ||||
18 | 3 | 13 | ||||
17 | 7 | 2 | ||||
14 | 4 | 8 | ||||
15 | 5 | 3 | ||||
12 | 8 | 5 | ||||
19 | 6 | 7 | ||||
8 | 15 | 16 | ||||
6 | 13 | 18 | ||||
1 | 1 | 1 | ||||
3 | 2 | 17 | ||||
2 | 14 | 14 | ||||
13 | 10 | 4 | ||||
16 | 9 | 6 | ||||
4 | 17 | 19 | ||||
5 | 19 | 15 | ||||
20 | 20 | 20 | ||||
11 | 18 | 9 |
表 6 不同模型下农网项目贡献度排名比较
Table 6 Comparison of rural grid project contribution rankings under different models
项目序号 | 贡献度排名 | |||||
模型1 | 模型2 | 模型3 | ||||
9 | 12 | 10 | ||||
10 | 11 | 12 | ||||
7 | 16 | 11 | ||||
18 | 3 | 13 | ||||
17 | 7 | 2 | ||||
14 | 4 | 8 | ||||
15 | 5 | 3 | ||||
12 | 8 | 5 | ||||
19 | 6 | 7 | ||||
8 | 15 | 16 | ||||
6 | 13 | 18 | ||||
1 | 1 | 1 | ||||
3 | 2 | 17 | ||||
2 | 14 | 14 | ||||
13 | 10 | 4 | ||||
16 | 9 | 6 | ||||
4 | 17 | 19 | ||||
5 | 19 | 15 | ||||
20 | 20 | 20 | ||||
11 | 18 | 9 |
模型 | 标准差σ | 变异系数υ | 灵敏度η | |||
1 | 0.0422 | 0.0647 | 0.0577 | |||
2 | 0.0356 | 0.0564 | 0.0462 | |||
3 | 0.0344 | 0.0536 | 0.0437 |
表 7 不同模型下样本分离度检验结果
Table 7 Sample separation test results under different models
模型 | 标准差σ | 变异系数υ | 灵敏度η | |||
1 | 0.0422 | 0.0647 | 0.0577 | |||
2 | 0.0356 | 0.0564 | 0.0462 | |||
3 | 0.0344 | 0.0536 | 0.0437 |
场景 | 项目序号 | 资金总额/ 万元 | 资金利用率 | 项目总评分 | 单位投资贡献度 | 净现值/ 万元 | ||||||
1)多目标场景 | 1242 | 35% | 2.3390 | 0.00188 | 3385 | |||||||
2636 | 75% | 4.6104 | 0.00175 | 6347 | ||||||||
2308 | 66% | 4.0846 | 0.00177 | 5653 | ||||||||
2)单位投资贡献度最优场景 | 889 | 25% | 1.7301 | 0.00195 | 2663 | |||||||
3)财务效益最优场景 | 2712 | 77% | 4.5503 | 0.00168 | 6421 |
表 8 3种场景下农网项目投资决策结果
Table 8 Results of investment decisions for rural grid projects in three scenarios
场景 | 项目序号 | 资金总额/ 万元 | 资金利用率 | 项目总评分 | 单位投资贡献度 | 净现值/ 万元 | ||||||
1)多目标场景 | 1242 | 35% | 2.3390 | 0.00188 | 3385 | |||||||
2636 | 75% | 4.6104 | 0.00175 | 6347 | ||||||||
2308 | 66% | 4.0846 | 0.00177 | 5653 | ||||||||
2)单位投资贡献度最优场景 | 889 | 25% | 1.7301 | 0.00195 | 2663 | |||||||
3)财务效益最优场景 | 2712 | 77% | 4.5503 | 0.00168 | 6421 |
1 | 毛世平, 张琳, 何龙娟, 等. 我国农业农村投资状况及未来投资重点领域分析[J]. 农业经济问题, 2021, 42 (7): 47- 56. |
MAO Shiping, ZHANG Lin, HE Longjuan, et al. Analysis on agricultural and rural investment status and key areas for future investment in China[J]. Issues in Agricultural Economy, 2021, 42 (7): 47- 56. | |
2 | 王利利, 贾梦雨, 韩松, 等. 基于TOPSIS—灰色关联度的农网投资效益与风险能力综合评价[J]. 电力科学与技术学报, 2020, 35 (4): 76- 83. |
WANG Lili, JIA Mengyu, HAN Song, et al. Synthesized evaluation of investment efficiency and risk ability of rural network based on TOPSIS-gray incidence[J]. Journal of Electric Power Science and Technology, 2020, 35 (4): 76- 83. | |
3 | 赵大光. 以“整村改造” 为核心的农配网规划与实施[J]. 企业管理, 2016, (增刊2): 324- 325. |
4 |
ILBAHAR E, CEBI S, KAHRAMAN C. A state-of-the-art review on multi-attribute renewable energy decision making[J]. Energy Strategy Reviews, 2019, 25, 18- 33.
DOI |
5 | 王泽祺, 刘友波, 任鹏哲, 等. 配电网精准投资理论与关键技术综述[J]. 电网技术, 2022, 46 (7): 2665- 2678. |
WANG Zeqi, LIU Youbo, REN Pengzhe, et al. Review of key technologies and theories of cost-effective investment orienting to distribution networks[J]. Power System Technology, 2022, 46 (7): 2665- 2678. | |
6 | 杨红磊, 盛万兴, 王金宇, 等. 基于模糊评价方法的农网改造升级工程投资效果分析[J]. 电工电能新技术, 2015, 34 (2): 55- 60. |
YANG Honglei, SHENG Wanxing, WANG Jinyu, et al. Fuzzy evaluation method of investment efficiency evaluation in rural distribution network transform and upgrade project[J]. Advanced Technology of Electrical Engineering and Energy, 2015, 34 (2): 55- 60. | |
7 | 檀晓林, 胡诗尧, 张菁, 等. 基于主成分分析与加权TOPSIS的县域配电网投资效益评估方法[J]. 电力科学与技术学报, 2022, 37 (3): 133- 139. |
TAN Xiaolin, HU Shiyao, ZHANG Jing, et al. Investment benefit assessment based on PCA and weighted TOPSIS in county distribution network[J]. Journal of Electric Power Science and Technology, 2022, 37 (3): 133- 139. | |
8 | 李彦吉, 王鑫陶, 康赫然, 等. 考虑效率、效益与碳减排提升的含可再生能源配电网投资优选模型[J]. 可再生能源, 2021, 39 (12): 1662- 1668. |
LI Yanji, WANG Xintao, KANG Heran, et al. An investment optimization model for distribution network containing renewable energy considering efficiency benefits and carbon emission reduction[J]. Renewable Energy Resources, 2021, 39 (12): 1662- 1668. | |
9 | 宋忧乐, 聂鼎, 王科, 等. 配电网规划中基于供给侧可靠性指标及其时空分解的精准投资问题研究[J]. 电测与仪表, 2023, 60 (5): 126- 131. |
SONG Youle, NIE Ding, WANG Ke, et al. Research on precision investment problems based on supply-side reliability index and its spatio-temporal decomposition in distribution network planning[J]. Electrical Measurement & Instrumentation, 2023, 60 (5): 126- 131. | |
10 | 潘笑, 邵建伟, 刘士齐, 等. 基于网格化规划的城市配电网精准投资策略[J]. 智慧电力, 2022, 50 (2): 1- 8. |
PAN Xiao, SHAO Jianwei, LIU Shiqi, et al. Accurate investment strategy for urban distribution network based on grid planning[J]. Smart Power, 2022, 50 (2): 1- 8. | |
11 | 马杰, 李秋燕, 王利利, 等. 考虑GIS信息的城市配电系统网格化动态投资策略优化[J]. 电力建设, 2021, 42 (11): 54- 62. |
MA Jie, LI Qiuyan, WANG Lili, et al. Optimization of grid dynamic investment strategy for urban distribution system considering GIS information[J]. Electric Power Construction, 2021, 42 (11): 54- 62. | |
12 | 贾梦雨, 李锰, 韩松, 等. 基于博弈论组合赋权的农村电网综合评价体系研究[J]. 电力科学与技术学报, 2020, 35 (2): 69- 75. |
JIA Mengyu, LI Meng, HAN Song, et al. Research on rural power system comprehensive evaluation system based on game theory combination weights[J]. Journal of Electric Power Science and Technology, 2020, 35 (2): 69- 75. | |
13 | 郑建新, 王艳君, 张松. 基于智能软开关的农村配电网无功优化[J]. 河北农业大学学报, 2022, 45 (4): 123- 129. |
ZHENG Jianxin, WANG Yanjun, ZHANG Song. Reactive power optimization of rural distribution network based on intelligent soft switch[J]. Journal of Hebei Agricultural University, 2022, 45 (4): 123- 129. | |
14 | 杨莘博, 谭忠富, 林宏宇, 等. 计及需求响应及储能聚合商的分布式农村清洁能源系统运行优化模型[J]. 系统工程理论与实践, 2022, 42 (12): 3319- 3334. |
YANG Shenbo, TAN Zhongfu, LIN Hongyu, et al. Operation optimization model of distributed rural clean energy system considering demand response and energy storage aggregator[J]. Systems Engineering-Theory & Practice, 2022, 42 (12): 3319- 3334. | |
15 | 刘芳, 门艳, 陈丽, 等. 农网智能化项目实施及技术经济评价研究[J]. 企业管理, 2016, (增刊2): 230- 231. |
16 |
PAMUČAR D, STEVIĆ Ž, SREMAC S. A new model for determining weight coefficients of criteria in MCDM models: full consistency method (FUCOM)[J]. Symmetry, 2018, 10 (9): 393.
DOI |
17 | 陈道君, 钟伟, 杨楠, 等. 基于综合赋权的电磁环网开环方案评价方法研究[J]. 高压电器, 2023, 59 (1): 77- 85. |
CHEN Daojun, ZHONG Wei, YANG Nan, et al. Research on evaluation method of open-loop scheme of electromagnetic loop network based on comprehensive weight[J]. High Voltage Apparatus, 2023, 59 (1): 77- 85. | |
18 | 徐其春, 张乃夫, 葛磊蛟, 等. 基于二项系数和变异系数混合的电网投资决策评价计算方法[J]. 中国测试, 2021, 47 (12): 6- 13. |
XU Qichun, ZHANG Naifu, GE Leijiao, et al. Calculation model of power grid investment decision evaluation based on the mixture of binomial coefficient and variant coefficient[J]. China Measurement & Test, 2021, 47 (12): 6- 13. | |
19 | 何铭, 邹艳丽, 梁明月, 等. 基于多属性决策的电力网络关键节点识别[J]. 复杂系统与复杂性科学, 2020, 17 (3): 27- 37. |
HE Ming, ZOU Yanli, LIANG Mingyue, et al. Critical node identification of a power grid based on multi-attribute decision[J]. Complex Systems and Complexity Science, 2020, 17 (3): 27- 37. | |
20 | 柯方超, 陈然, 唐学军, 等. 基于信息熵的电网基建参与单位绩效评价方法[J]. 武汉理工大学学报(信息与管理工程版), 2022, 44 (3): 402- 409. |
KE Fangchao, CHEN Ran, TANG Xuejun, et al. Performance appraisal of participates in the projects for the construction of power system infrastructure[J]. Journal of Wuhan University of Technology (Information & Management Engineering), 2022, 44 (3): 402- 409. | |
21 | 杜岩, 谢从珍, 李彦丞, 等. 基于加权马氏距离型TOPSIS算法的10 kV配电网雷害风险评估[J]. 中国电力, 2022, 55 (4): 108- 116. |
DU Yan, XIE Congzhen, LI Yancheng, et al. Lightning risk assessment of 10 kV distribution line based on TOPSIS algorithm improved by weighted mahalanobis distance[J]. Electric Power, 2022, 55 (4): 108- 116. | |
22 | MING M J, TRIVEDI A, WANG R, et al. A dual-population-based evolutionary algorithm for constrained multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25 (4): 739- 753. |
23 | XU B, ZHANG G Y, LI K, et al. Reactive power optimization of a distribution network with high-penetration of wind and solar renewable energy and electric vehicles[J]. Protection and Control of Modern Power Systems, 2022: 1–13. |
24 |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182- 197.
DOI |
25 |
ZHANG Q F, LI H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11 (6): 712- 731.
DOI |
26 |
ZHAO H R, LI B K, LU H, et al. Economy-environment-energy performance evaluation of CCHP microgrid system: a hybrid multi-criteria decision-making method[J]. Energy, 2022, 240, 122830.
DOI |
[1] | 刘文军, 董伟杰, 陈远扬, 何书耘, 陈剑, 贾东强. 新能源高渗透配电网柔性多状态开关的多目标优化控制策略[J]. 中国电力, 2025, 58(1): 85-92. |
[2] | 钟成, 翟迪, 陆阳, 范静怡, 刘晓波, 张馨月, 赵雄文. 城市电网本地通信网络数字化感知业务与通信技术适配研究[J]. 中国电力, 2023, 56(8): 86-98. |
[3] | 罗超月岭, 李智威, 徐祯雨, 唐学军, 李黎, 方钊. 配电网设备资产运检成本影响因素评价分析[J]. 中国电力, 2023, 56(7): 216-227. |
[4] | 任鑫, 王渡, 金亚飞, 王志刚. 基于能耗、经济性及碳排放的热电联产机组运行优化[J]. 中国电力, 2023, 56(4): 201-210. |
[5] | 祁升龙, 李磊, 何玉鹏, 朱林, 王放, 邹红波. 基于BSSSO算法的无功补偿容量优化方法[J]. 中国电力, 2023, 56(1): 106-111. |
[6] | 周安仁, 汪剑荣, 马智泉, 李为林. 基于跨临界CO2热泵的茶叶生产能源系统负荷削减潜力[J]. 中国电力, 2022, 55(6): 154-160,171. |
[7] | 杜岩, 谢从珍, 李彦丞, 谢心昊, 栾乐, 罗思敏. 基于加权马氏距离型TOPSIS算法的10 kV配电网雷害风险评估[J]. 中国电力, 2022, 55(4): 108-116. |
[8] | 蒋从伟, 欧庆和, 吴仲超, 张健, 杨澍, 朱佳男, 艾芊. 基于联盟博弈的多微网共享储能联合配置与优化[J]. 中国电力, 2022, 55(12): 11-21. |
[9] | 程智余, 朱晓虎, 李建青. 基于改进ELECTRE法的电网规划投资多准则融合决策方法[J]. 中国电力, 2022, 55(11): 59-65. |
[10] | 方彤, 蒋东方, 杨洋, 袁铁江. 基于NSGA-II和熵权法的氢综合能源系统商业运营模式[J]. 中国电力, 2022, 55(1): 110-118. |
[11] | 赵璞, 周满, 高建宇, 潘乐真, 刘自发, 谢浩铠. 基于电能替代的园区综合能源规划评价方法[J]. 中国电力, 2021, 54(4): 130-140. |
[12] | 张敏, 王金浩, 常潇, 杨超颖, 李冉, 孙昌雯, 樊瑞. 考虑可再生能源不确定性的热-电耦合微能源系统多目标鲁棒规划方法[J]. 中国电力, 2021, 54(4): 119-129,140. |
[13] | 卢志刚, 乞胜静, 蔡瑶, 马雨薇. 基于改进MOBCC算法的热电联合系统经济环境调度[J]. 中国电力, 2021, 54(2): 164-174. |
[14] | 李娜, 李朝阳, 周进, 高毅, 洪运福, 游维扬. 考虑投资均衡和效益性的中压配电网投资分配[J]. 中国电力, 2021, 54(12): 143-149. |
[15] | 李雪松, 蒋宇, 刘胥雯, 王阳, 丁羽. 基于改进Critic-G1算法的发电商市场力综合评价方法[J]. 中国电力, 2021, 54(11): 59-67. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||