[1] 鲁裕婷, 赵天乐, 都洪基, 等. 基于改进粒子群算法的含DG配电网无功优化[J]. 电力工程技术, 2018, 37(6): 69–74 LU Yuting, ZHAO Tianle, DU Hongji, et al. Reactive power optimization of distribution network with distributed generation based on improved particle swarm optimization algorithm[J]. Electric Power Engineering Technology, 2018, 37(6): 69–74 [2] 尹青, 杨洪耕, 马晓阳. 考虑多重不确定参数的配电网概率无功优化[J]. 电力系统保护与控制, 2017, 45(7): 141–147 YIN Qing, YANG Honggeng, MA Xiaoyang. Probabilistic reactive power optimization for distribution network considering multiple uncertainties[J]. Power System Protection and Control, 2017, 45(7): 141–147 [3] 刘星辰. 含分布式电源的配电网运行优化方法研究[D]. 沈阳: 沈阳农业大学, 2018. LIU Xingchen. Operation optimization of distribution network with distributed generation[D]. Shenyang: Shenyang Agricultural University, 2018. [4] 崔静, 吴杰康, 陆伟明. 电力系统无功优化算法综述[J]. 黑龙江电力, 2015, 37(5): 436–440 CUI Jing, WU Jiekang, LU Weiming. Research on reactive optimization algorithm for power system[J]. Heilongjiang Electric Power, 2015, 37(5): 436–440 [5] 李晓利, 高金峰. 用于配电网多目标无功优化的改进粒子群优化算法[J]. 电力自动化设备, 2019, 39(1): 106–111 LI Xiaoli, GAO Jinfeng. Improved particle swarm optimization algorithm for multi-objective reactive power optimization of distribution network[J]. Electric Power Automation Equipment, 2019, 39(1): 106–111 [6] 王怡. 电网无功优化算法的研究与实现[D]. 北京: 华北电力大学(北京), 2017. WANG Yi. Research and realization of reactive power optimization algorithm for power grid[D]. Beijing: North China Electric Power University, 2017. [7] 何禹清, 彭建春, 毛丽林, 等. 含多个风电机组的配电网无功优化[J]. 电力系统自动化, 2010, 34(19): 37–41 HE Yuqing, PENG Jianchun, MAO Lilin, et al. Reactive power optimization in distribution system with multiple wind power generators[J]. Automation of Electric Power Systems, 2010, 34(19): 37–41 [8] 董雷, 田爱忠, 于汀, 等. 基于混合整数半定规划的含分布式电源配电网无功优化[J]. 电力系统自动化, 2015, 39(21): 66–72, 125 DONG Lei, TIAN Aizhong, YU Ting, et al. Reactive power optimization for distribution network with distributed generators based on mixed integer semi-definite programming[J]. Automation of Electric Power Systems, 2015, 39(21): 66–72, 125 [9] 徐朝阳, 王孝友, 徐德贵, 等. 基于改进粒子群算法的动态无功优化研究[J]. 东北电力大学学报, 2017, 37(3): 33–38 XU Zhaoyang, WANG Xiaoyou, XU Degui, et al. Research on dynamic reactive power optimization based on improved PSO[J]. Journal of Northeast Electric Power University, 2017, 37(3): 33–38 [10] 冷喜武, 陈国平, 蒋宇, 等. 智能电网监控运行大数据应用模型构建方法[J]. 电力系统自动化, 2018, 42(20): 115–123 LENG Xiwu, CHEN Guoping, JIANG Yu, et al. Model construction method of big data application for monitoring and control of smart grid[J]. Automation of Electric Power Systems, 2018, 42(20): 115–123 [11] 赵腾, 张焰, 张东霞. 智能配电网大数据应用技术与前景分析[J]. 电网技术, 2014, 38(12): 3305–3312 ZHAO Teng, ZHANG Yan, ZHANG Dongxia. Application technology of big data in smart distribution grid and its prospect analysis[J]. Power System Technology, 2014, 38(12): 3305–3312 [12] 张东霞, 王继业, 刘科研, 等. 大数据技术在配用电系统的应用[J]. 供用电, 2015, 32(8): 6–11 ZHANG Dongxia, WANG Jiye, LIU Keyan, et al. Application of big data technologies in power distribution and utilization system[J]. Distribution & Utilization, 2015, 32(8): 6–11 [13] 贺兴, 艾芊, 邱才明, 等. 随机矩阵理论在电力系统认知中的应用初探[J]. 电网技术, 2017, 41(4): 1165–1173 HE Xing, AI Qian, QIU Caiming, et al. A primary study on the situation awareness of power systems using random matrix theory[J]. Power System Technology, 2017, 41(4): 1165–1173 [14] 徐心怡, 贺兴, 艾芊, 等. 基于随机矩阵理论的配电网运行状态相关性分析方法[J]. 电网技术, 2016, 40(3): 781–790 XU Xinyi, HE Xing, AI Qian, et al. A correlation analysis method for operation status of distribution network based on random matrix theory[J]. Power System Technology, 2016, 40(3): 781–790 [15] 刘威, 张东霞, 丁玉成, 等. 基于随机矩阵理论与熵理论的电网薄弱环节辨识方法[J]. 中国电机工程学报, 2017, 37(20): 5893–5901 LIU Wei, ZHANG Dongxia, DING Yucheng, et al. Power grid vulnerability identification methods based on random matrix theory and entropy theory[J]. Proceedings of the CSEE, 2017, 37(20): 5893–5901 [16] 刘科研, 季玉琦, 陆凌芝, 等. 基于负荷分布匹配与熵权法的配电网无功优化[J]. 电网技术, 2017, 41(12): 3980–3988 LIU Keyan, JI Yuqi, LU Lingzhi, et al. Reactive power optimization in distribution network based on load distribution matching and entropy weight method[J]. Power System Technology, 2017, 41(12): 3980–3988 [17] 贺川双, 杜修明, 严英杰, 等. 基于数据挖掘和主成分分析的电力设备状态评价[J]. 高压电器, 2017, 53(12): 34–41 HE Chuanshuang, DU Xiuming, YAN Yingjie, et al. Condition evaluation of power equipment based on data mining and principal component analysis[J]. High Voltage Apparatus, 2017, 53(12): 34–41 [18] 邵美阳, 吴俊勇, 石琛, 等. 基于数据驱动和深度置信网络的配电网无功优化[J]. 电网技术, 2019, 43(6): 1874–1885 SHAO Meiyang, WU Junyong, SHI Chen, et al. Reactive power optimization of distribution network based on data driven and deep belief network[J]. Power System Technology, 2019, 43(6): 1874–1885 [19] 朱孝文, 吴俊勇, 石琛, 等. 基于自由熵理论和智能场景匹配的配电网无功优化[J]. 供用电, 2019, 36(1): 68–74, 86 ZHU Xiaowen, WU Junyong, SHI Chen, et al. Reactive power optimization of distribution network based on free entropy theory and intelligent scene matching[J]. Distribution & Utilization, 2019, 36(1): 68–74, 86 [20] 崔雨. 基于粒子群算法的配电网无功优化的研究[D]. 大庆: 东北石油大学, 2018. CUI Yu. Research on reactive power optimization of distribution network based on particle swarm optimization[D]. Daqing: Northeast Petroleum University, 2018.
|