[1] 周晖, 王跃, 李明烜, 等. 孤岛并联虚拟同步发电机暂态功率分配机理分析与优化控制[J]. 电工技术学报, 2019, 34(增刊2): 654–663 ZHOU Hui, WANG Yue, LI Mingxuan, et al. Analysis and optimal control of transient active power sharing between islanded parallel virtual synchronous generators[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 654–663 [2] 张巍, 黄文, 帅智康, 等. 虚拟调速器对VSG暂态功角稳定影响机理分析[J]. 电力自动化设备, 2022, 42(8): 55–62, 71 ZHANG Wei, HUANG Wen, SHUAI Zhikang, et al. Impact mechanism analysis of virtual governor on transient power angle stability of VSG[J]. Electric Power Automation Equipment, 2022, 42(8): 55–62, 71 [3] WU D, TANG F, DRAGICEVIC T, et al. A control architecture to coordinate renewable energy sources and energy storage systems in islanded microgrids[J]. IEEE Transactions on Smart Grid, 2015, 6(3): 1156–1166. [4] 孙佳航, 冯忠楠, 黄景光, 等. 基于改进VSG的风光储联合发电系统低电压穿越控制策略[J/OL]. 电网技术: 1–14[2022-11-08]. http://DOI: 10.13335/j. 1000-3673. pst. 2022.0717. SUN Jiahang, FENG Zhongnan, HUANG Jingguang, et al. Low-voltage ride-through control strategy of wind-storage co-generation system based on improved VSG [J/OL]. Power System Technology: 1–14[2022-11-08]. http://DOI:10.13335/j.1000-3673.pst.2022.0717. [5] 吴鸣, 吕振宇, 宋振浩, 等. 独立型虚拟同步化微电网分布式无功-电压二级控制策略[J]. 电力自动化设备, 2022, 42(8): 63–71 WU Ming, LÜ Zhenyu, SONG Zhenhao, et al. Distributed reactive power-voltage secondary control strategy of independent virtual synchronization technology-based microgrid[J]. Electric Power Automation Equipment, 2022, 42(8): 63–71 [6] 倪泽龙, 林钰钧, 王治涛, 等. 基于模型预测的虚拟同步机控制储能调频研究[J]. 电力系统保护与控制, 2022, 50(14): 85–93 NI Zelong, LIN Yujun, WANG Zhitao, et al. Research on frequency modulation of virtual synchronous machine controlled energy storage based on model prediction[J]. Power System Protection and Control, 2022, 50(14): 85–93 [7] 张冠锋, 杨俊友, 王海鑫, 等. 基于虚拟同步机技术的风储系统协调调频控制策略[J]. 电工技术学报, 2022, 37(增刊1): 83–92 ZHANG Guanfeng, YANG Junyou, WANG Haixin, et al. Coordinated frequency modulation control strategy of wind farm-storage system based on virtual synchronous generator technology[J]. Transactions of China Electrotechnical Society, 2022, 37(S1): 83–92 [8] 于彦雪, 马慧敏, 陈晓光, 等. 弱电网下基于准静态模型的混合控制微电网逆变器同步稳定性研究[J]. 电工技术学报, 2022, 37(1): 152–164 YU Yanxue, MA Huimin, CHEN Xiaoguang, et al. Synchronous stability research of inverters in hybrid microgrid based on the quasi-static models under weak grid[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 152–164 [9] TANG X S, HU X, LI N N, et al. A novel frequency and voltage control method for islanded microgrid based on multienergy storages[J]. IEEE Transactions on Smart Grid, 2016, 7(1): 410–419. [10] LONG B, LIAO Y, CHONG K T, et al. MPC-controlled virtual synchronous generator to enhance frequency and voltage dynamic performance in islanded microgrids[J]. IEEE Transactions on Smart Grid, 2021, 12(2): 953–964. [11] DEHKORDI N M, BAGHAEE H R, SADATI N, et al. Distributed noise-resilient secondary voltage and frequency control for islanded microgrids[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 3780–3790. [12] DI GIORGIO A, LIBERATI F, LANNA A, et al. Model predictive control of energy storage systems for power tracking and shaving in distribution grids[J]. IEEE Transactions on Sustainable Energy, 2017, 8(2): 496–504. [13] PAHASA J, NGAMROO I. Coordinated control of wind turbine blade pitch angle and PHEVs using MPCs for load frequency control of microgrid[J]. IEEE Systems Journal, 2016, 10(1): 97–105. [14] RYAN D J, RAZZAGHI R, TORRESAN H D, et al. Grid-supporting battery energy storage systems in islanded microgrids: a data-driven control approach[J]. IEEE Transactions on Sustainable Energy, 2021, 12(2): 834–846. [15] 王开让, 赵一名, 孟建辉, 等. 基于自适应模型预测控制的光储虚拟同步机平滑并网策略[J]. 高电压技术, 2023, 49(2): 831–839 WANG Kairang, ZHAO Yiming, MENG Jianhui, et al. Smooth grid-connection strategy of optical storage virtual synchronizer based on adaptive model predictive control[J]. High Voltage Engineering, 2023, 49(2): 831–839 [16] WANG Z Y, CHEN B K, WANG J H, et al. Decentralized energy management system for networked microgrids in grid-connected and islanded modes[J]. IEEE Transactions on Smart Grid, 2016, 7(2): 1097–1105. [17] KASEM ALABOUDY A H, ZEINELDIN H H, KIRTLEY J. Microgrid stability characterization subsequent to fault-triggered islanding incidents[J]. IEEE Transactions on Power Delivery, 2012, 27(2): 658–669. [18] KAWABE K, TANAKA K. Impact of dynamic behavior of photovoltaic power generation systems on short-term voltage stability[J]. IEEE Transactions on Power Systems, 2015, 30(6): 3416–3424. [19] 沈可心, 薛博文, 朱晓荣. 直流微网中直驱风机的类虚拟同步发电机惯性控制策略[J/OL]. 高电压技术: 1–12[2022-11-09]. http://DOI: 10.13336/j. 1003-6520. hve. 20221056. SHEN Kexin, XUE Bowen, ZHU Xiaorong. Inertia control strategy of direct-driven wind generation system in DC microgrid based on analogous virtual synchronous generator [J/OL]. High Voltage Engineering: 1–12[2022-11-09]. http://DOI: 10.13336/j. 1003-6520. hve. 20221056. [20] SHI K, SONG W T, GE H L, et al. Transient analysis of microgrids with parallel synchronous generators and virtual synchronous generators[J]. IEEE Transactions on Energy Conversion, 2020, 35(1): 95–105. [21] CHENG H J, HUANG W, SHEN C, et al. Transient voltage stability of paralleled synchronous and virtual synchronous generators with induction motor loads[J]. IEEE Transactions on Smart Grid, 2021, 12(6): 4983–4999.
|