[1] 刘吉臻, 李明扬, 房方, 等. 虚拟发电厂研究综述[J]. 中国电机工程学报, 2014, 34(29): 5103–5111 LIU Jizhen, LI Mingyang, FANG Fang, et al. Review on virtual power plants[J]. Proceedings of the CSEE, 2014, 34(29): 5103–5111 [2] 艾芊, 郝然. 多能互补、集成优化能源系统关键技术及挑战[J]. 电力系统自动化, 2018, 42(4): 2–10,46 AI Qian, HAO Ran. Key technologies and challenges for multi-energy complementarity and optimization of integrated energy system[J]. Automation of Electric Power Systems, 2018, 42(4): 2–10,46 [3] 王成山, 李鹏. 分布式发电、微网与智能配电网的发展与挑战[J]. 电力系统自动化, 2010, 34(2): 10–14,23 WANG Chengshan, LI Peng. Development and challenges of distributed generation, the micro-grid and smart distribution system[J]. Automation of Electric Power Systems, 2010, 34(2): 10–14,23 [4] 刘吉臻. 大规模新能源电力安全高效利用基础问题[J]. 中国电机工程学报, 2013, 33(16): 1–8,25 LIU Jizhen. Basic issues of the utilization of large-scale renewable power with high security and efficiency[J]. Proceedings of the CSEE, 2013, 33(16): 1–8,25 [5] BHUIYAN E A, HOSSAIN M Z, MUYEEN S M, et al. Towards next generation virtual power plant: technology review and frameworks[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111358. [6] 刘林, 李苏秀, 张桦, 等. 能源互联网商业模式迭代体系与方法初探[J]. 中国电力, 2022, 55(1): 203–213 LIU Lin, LI Suxiu, ZHANG Hua, et al. Business model iteration system and method for energy Internet[J]. Electric Power, 2022, 55(1): 203–213 [7] YANG H M, YI D X, ZHAO J H, et al. Distributed optimal dispatch of virtual power plant via limited communication[J]. IEEE Transactions on Power Systems, 2013, 28(3): 3511–3512. [8] 林毓军, 苗世洪, 杨炜晨, 等. 面向多重不确定性环境的虚拟电厂日前优化调度策略[J]. 电力自动化设备, 2021, 41(12): 143–150 LIN Yujun, MIAO Shihong, YANG Weichen, et al. Day-ahead optimal scheduling strategy of virtual power plant for environment with multiple uncertainties[J]. Electric Power Automation Equipment, 2021, 41(12): 143–150 [9] 孙晶琪, 王愿, 郭晓慧, 等. 考虑环境外部性和风光出力不确定性的虚拟电厂运行优化[J]. 电力系统自动化, 2022, 46(8): 50–59 SUN Jingqi, WANG Yuan, GUO Xiaohui, et al. Optimal operation of virtual power plant considering environmental externality and output uncertainty of wind and photovoltaic power[J]. Automation of Electric Power Systems, 2022, 46(8): 50–59 [10] 蒋国栋, 韩韬, 罗首权, 等. 基于虚拟电厂优化算法的负荷聚合商收益分析[J]. 电力需求侧管理, 2021, 23(6): 75–80,86 JIANG Guodong, HAN Tao, LUO Shouquan, et al. Benefit analysis of load aggregators based on virtual power plant optimization algorithm[J]. Power Demand Side Management, 2021, 23(6): 75–80,86 [11] LOU N, ZHANG Y, WANG Y Q, et al. Two-stage congestion management considering virtual power plant with cascade hydro-photovoltaic-pumped storage hybrid generation[J]. IEEE Access, 2020, 8: 186335–186347. [12] 张卫国, 宋杰, 郭明星, 等. 考虑电动汽车充电需求的虚拟电厂负荷均衡管理策略[J]. 电力系统自动化, 2022, 46(9): 118–126 ZHANG Weiguo, SONG Jie, GUO Mingxing, et al. Load balancing management strategy for virtual power plants considering charging demand of electric vehicles[J]. Automation of Electric Power Systems, 2022, 46(9): 118–126 [13] 卢志刚, 王荟敬, 赵号, 等. 含V2G的虚拟电厂双层逆鲁棒优化调度策略[J]. 电网技术, 2017, 41(4): 1245–1252 LU Zhigang, WANG Huijing, ZHAO Hao, et al. Strategy of bilevel inverse robust optimization dispatch of virtual power plant containing V2G[J]. Power System Technology, 2017, 41(4): 1245–1252 [14] 李鹏, 张保会, 汪成根, 等. 基于模型预测的分布式电压协调控制[J]. 电力系统自动化, 2010, 34(11): 8–12 LI Peng, ZHANG Baohui, WANG Chenggen, et al. The model prediction based distributed coordinated voltage control[J]. Automation of Electric Power Systems, 2010, 34(11): 8–12 [15] QI W, LIU J F, CHEN X Z, et al. Supervisory predictive control of standalone wind/solar energy generation systems[J]. IEEE Transactions on Control Systems Technology, 2011, 19(1): 199–207. [16] 张伯明, 陈建华, 吴文传. 大规模风电接入电网的有功分层模型预测控制方法[J]. 电力系统自动化, 2014, 38(9): 6–14 ZHANG Boming, CHEN Jianhua, WU Wenchuan. A hierarchical model predictive control method of active power for accommodating large-scale wind power integration[J]. Automation of Electric Power Systems, 2014, 38(9): 6–14 [17] ZHENG Y C, YU H, SHAO Z Y, et al. Day-ahead bidding strategy for electric vehicle aggregator enabling multiple agent modes in uncertain electricity markets[J]. Applied Energy, 2020, 280: 115977. [18] DAS S, BASU M. Day-ahead optimal bidding strategy of microgrid with demand response program considering uncertainties and outages of renewable energy resources[J]. Energy, 2020, 190: 116441. [19] WANG Y B, DONG W, YANG Q. Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets[J]. Applied Energy, 2022, 310: 118528. [20] GARCIA-TORRES F, BORDONS C, TOBAJAS J, et al. Optimal schedule for networked microgrids under deregulated power market environment using model predictive control[J]. IEEE Transactions on Smart Grid, 2021, 12(1): 182–191. [21] YU Y, SI X S, HU C H, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7): 1235–1270. [22] TANG J J, ZHAO J, ZOU H L, et al. Bus load forecasting method of power system based on VMD and Bi-LSTM[J]. Sustainability, 2021, 13(19): 10526. [23] RAJAGUKGUK R A, RAMADHAN R A A, LEE H J. A review on deep learning models for forecasting time series data of solar irradiance and photovoltaic power[J]. Energies, 2020, 13(24): 6623. [24] WU T, YANG Q, BAO Z J, et al. Coordinated energy dispatching in microgrid with wind power generation and plug-in electric vehicles[J]. IEEE Transactions on Smart Grid, 2013, 4(3): 1453–1463. [25] 汪洋叶, 赵力航, 常伟光, 等. 基于模型预测控制的虚拟电厂储能系统能量协同优化调控方法[J]. 智慧电力, 2021, 49(7): 16–22 WANG Yangye, ZHAO Lihang, CHANG Weiguang, et al. Model predictive control based energy collaborative optimization control method for energy storage system of virtual power plant[J]. Smart Power, 2021, 49(7): 16–22
|