中国电力 ›› 2023, Vol. 56 ›› Issue (11): 168-176.DOI: 10.11930/j.issn.1004-9649.202304076
金雪芬1(), 季建辉2(
), 李兰芳2, 李奇南2, 张帆2, 詹雄2(
), 黄均纬3
收稿日期:
2023-04-20
出版日期:
2023-11-28
发布日期:
2023-11-28
作者简介:
金雪芬(1984—),女,硕士,高级工程师,从事新型电力系统装备研究,E-mail: xiaopangcumt@163.com基金资助:
Xuefen JIN1(), Jianhui JI2(
), Lanfang LI2, Qinan LI2, Fan ZHANG2, Xiong ZHAN2(
), Junwei HUANG3
Received:
2023-04-20
Online:
2023-11-28
Published:
2023-11-28
Supported by:
摘要:
针对模块化多电平电池储能系统(MMC-BESS)技术实际工程应用问题,从调制、效率、子模块电容电压均衡及器件选型4个维度,为荷电状态(SOC)均衡控制参数设计提供理论依据及操作性强的实用设计步骤和方法,并提出了控制参数分段的桥臂内子模块间SOC均衡控制方法,用于提高SOC均衡控制速度,以拟建的示范工程为示例,进行控制参数设计,并通过仿真验证控制参数设计的合理性及分段控制参数加速SOC均衡控制的有效性。
金雪芬, 季建辉, 李兰芳, 李奇南, 张帆, 詹雄, 黄均纬. 面向工程应用的MMC-BESS的SOC均衡控制参数设计[J]. 中国电力, 2023, 56(11): 168-176.
Xuefen JIN, Jianhui JI, Lanfang LI, Qinan LI, Fan ZHANG, Xiong ZHAN, Junwei HUANG. Parameter Design of SOC Balance Control for MMC-BESS Engineering Applications[J]. Electric Power, 2023, 56(11): 168-176.
名称 | 参数 | |
交流并网线电压/kV | 6 | |
直流并网电压/kV | 12 | |
MMC-BESS单机功率/kW | 8000 | |
变压器容量/MW | 9 | |
电压变比(网/阀)/(kV·kV–1) | 10/6 | |
短路阻抗/% | 7.5 | |
联结组别(网/阀) | DY0 | |
IGBT型号 | 3300 V/1500 A | |
子模块额定电容电压/kV | 1 | |
单桥臂子模块数 | 12 | |
额定总电流有效值/A | 458 | |
额定交流电流峰值/A | 566 | |
电容/mF | 18 | |
电池单体最高电压/V | 3.5 | |
电池单体最低电压/V | 3 | |
电池单体标称电压/V | 3.2 | |
电池容量规格/(A·h) | 92 | |
子模块电池能量/(kW·h) | 122.47 | |
储能系统总容量/(kW·h) | 8817.87 | |
电池簇额定工作电流/A | 83.47 | |
子模块单体数量P,S | 1,416 | |
子模块电池组总内阻/Ω | 0.48 | |
单桥臂连接电抗/mH | 3 | |
滤波电感值/mH | 7 |
表 1 MMC-BESS系统参数
Table 1 System parameters of MMC-BESS
名称 | 参数 | |
交流并网线电压/kV | 6 | |
直流并网电压/kV | 12 | |
MMC-BESS单机功率/kW | 8000 | |
变压器容量/MW | 9 | |
电压变比(网/阀)/(kV·kV–1) | 10/6 | |
短路阻抗/% | 7.5 | |
联结组别(网/阀) | DY0 | |
IGBT型号 | 3300 V/1500 A | |
子模块额定电容电压/kV | 1 | |
单桥臂子模块数 | 12 | |
额定总电流有效值/A | 458 | |
额定交流电流峰值/A | 566 | |
电容/mF | 18 | |
电池单体最高电压/V | 3.5 | |
电池单体最低电压/V | 3 | |
电池单体标称电压/V | 3.2 | |
电池容量规格/(A·h) | 92 | |
子模块电池能量/(kW·h) | 122.47 | |
储能系统总容量/(kW·h) | 8817.87 | |
电池簇额定工作电流/A | 83.47 | |
子模块单体数量P,S | 1,416 | |
子模块电池组总内阻/Ω | 0.48 | |
单桥臂连接电抗/mH | 3 | |
滤波电感值/mH | 7 |
SOCpa | SOCpb | SOCpc | SOCna | SOCnb | ||||
0.883 3 | 0.9 | 0.9 | 0.9 | 0.9000 | ||||
SOCnc | SOCa | SOCb | SOCc | SOCBESS | ||||
0.9000 | 0.891 7 | 0.9 | 0.9 | 0.897 2 |
表 2 SOC初始值
Table 2 Initial values of SOC
SOCpa | SOCpb | SOCpc | SOCna | SOCnb | ||||
0.883 3 | 0.9 | 0.9 | 0.9 | 0.9000 | ||||
SOCnc | SOCa | SOCb | SOCc | SOCBESS | ||||
0.9000 | 0.891 7 | 0.9 | 0.9 | 0.897 2 |
ΔSOCmax/% | Kp3 | ΔSOCmax/% | Kp3 | |||
10 | 1.0 | 3 | 3.7 | |||
5 | 2.0 | 2 | 5.7 | |||
4 | 2.6 | 1 | 11.5 |
表 3 分段控制参数值
Table 3 Segmented control parameters
ΔSOCmax/% | Kp3 | ΔSOCmax/% | Kp3 | |||
10 | 1.0 | 3 | 3.7 | |||
5 | 2.0 | 2 | 5.7 | |||
4 | 2.6 | 1 | 11.5 |
1 | 杨舒婷, 陈新, 黄通, 等. 考虑MMC环流控制的海上风电经柔直送出系统阻抗塑造方法[J]. 中国电力, 2023, 56 (4): 38- 45. |
YANG Shuting, CHEN Xin, HUANG Tong, et al. Impedance modeling method of offshore wind farm integration through MMC-HVDC with MMC circulation control[J]. Electric Power, 2023, 56 (4): 38- 45. | |
2 | 李建林, 丁子洋, 刘海涛, 等. 构网型储能变流器及控制策略研究[J]. 发电技术, 2022, 43 (5): 679- 686. |
LI Jianlin, DING Ziyang, LIU Haitao, et al. Research on grid-forming energy storage converters and control strategy[J]. Power Generation Technology, 2022, 43 (5): 679- 686. | |
3 | 花雅文, 李庚, 韩国栋, 等. 混合背靠背模块化多电平变换器设计[J]. 智慧电力, 2021, 49 (8): 70- 76. |
HUA Yawen, LI Geng, HAN Guodong, et al. Design of hybrid back-to-back modular multilevel converter[J]. Smart Power, 2021, 49 (8): 70- 76. | |
4 | . [J]. 2022, 55 (6): 118- 127. |
LIAO Xiupu, ZHOU Quan, LI Lei, et al. A feasible topology of DC collection valve for long-distance offshore wind farms and cost-effective analysis[J]. Electric Power, 2022, 55 (6): 118- 127. | |
5 | 孔凡森,周建萍,茅大钧,等. 基于虚拟阻抗与无源反步控制的MMC-BESS环流抑制策略[J]. 南方电网技术, 2022, 16 (10): 104- 112. |
KONG Fansen, ZHOU Jianping, MAO Dajun, et al. Control circulating current suppressing strategy of MMC-BESS based on virtual impedance passive backstepping control[J]. Southern Power System Technology, 2022, 16 (10): 104- 112. | |
6 | 余斌, 李辉, 赖锦木, 等. 基于桥臂电流控制的模块化多电平储能系统谐波抑制策略[J]. 电力科学与技术学报, 2023, 38 (4): 82- 92. |
YU Bin, LI Hui, LAI Jinmu, et al. Harmonic suppression strategy of MMC-BESS based on arm current control[J]. Journal of Electric Power Science and Technology, 2023, 38 (4): 82- 92. | |
7 | PEREZ M A, ARANCIBIA D, KOURO S, et al. Modular multilevel converter with integrated storage for solar photovoltaic applications[C]//IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society. Vienna, Austria. IEEE, 2014: 6993–6998. |
8 | VASILADIOTIS M, RUFER A, BÉGUIN A. Modular converter architecture for medium voltage ultra fast EV charging stations: global system considerations[C]//2012 IEEE International Electric Vehicle Conference. Greenville, SC, USA. IEEE, 2012: 1–7. |
9 | COPPOLA M, DEL PIZZO A, IANNUZZI D. A power traction converter based on Modular Multilevel architecture integrated with energy storage devices[C]//2012 Electrical Systems for Aircraft, Railway and Ship Propulsion. Bologna, Italy. IEEE, 2012: 1–7. |
10 | BARUSCHKA L, MERTENS A. Comparison of cascaded H-bridge and modular multilevel converters for BESS application[C]//2011 IEEE Energy Conversion Congress and Exposition. Phoenix, AZ, USA. IEEE, 2011: 909–916. |
11 |
SOONG T, LEHN P W. Evaluation of emerging modular multilevel converters for BESS applications[J]. IEEE Transactions on Power Delivery, 2014, 29 (5): 2086- 2094.
DOI |
12 |
李善颖, 吴涛, 任彬, 等. 基于模块化多电平变换器的储能系统综述[J]. 电力系统保护与控制, 2015, 43 (16): 139- 146.
DOI |
LI Shanying, WU Tao, REN Bin, et al. Review of energy storage system based on modular multilevel converter[J]. Power System Protection and Control, 2015, 43 (16): 139- 146.
DOI |
|
13 | TRINTIS I, MUNK-NIELSEN S, TEODORESCU R. A new modular multilevel converter with integrated energy storage[C]//IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society. Melbourne, VIC, Australia. IEEE, 2012: 1075–1080. |
14 |
马泽宇, 姜久春, 文锋, 等. 用于储能系统的梯次利用锂电池组均衡策略设计[J]. 电力系统自动化, 2014, 38 (3): 106- 111, 117.
DOI |
MA Zeyu, JIANG Jiuchun, WEN Feng, et al. Design of equilibrium strategy of echelon use Li-ion battery pack for energy storage system[J]. Automation of Electric Power Systems, 2014, 38 (3): 106- 111, 117.
DOI |
|
15 | 蔡旭, 李睿, 李征. 储能功率变换与并网技术[M]. 北京: 科学出版社, 2019. |
16 | 原亚雷, 钊翔坤, 徐高祥, 等. 兼顾电压波动抑制的级联H桥STATCOM相间电压平衡控制策略[J]. 电网技术, 2022, 46 (4): 1494- 1502. |
YUAN Yalei, ZHAO Xiangkun, XU Gaoxiang, et al. Clustered voltage banlance control strategy of cascaded H-bridge STATCOM with suppressing DC voltage fluctuation[J]. Power System Technology, 2022, 46 (4): 1494- 1502. | |
17 |
王帅, 荆龙, 吴学智, 等. 基于直流环流注入的MMC储能系统相间功率均衡控制策略[J]. 电网技术, 2017, 41 (9): 2862- 2869.
DOI |
WANG Shuai, JING Long, WU Xuezhi, et al. Interphase power equalization control strategy for MMC energy storage system based on DC circulating current injection[J]. Power System Technology, 2017, 41 (9): 2862- 2869.
DOI |
|
18 | 韩啸, 陈强, 李睿. 储能型MMC电池荷电状态均衡策略[J]. 电力电子技术, 2020, 54 (4): 17- 20. |
HAN Xiao, CHEN Qiang, LI Rui. State of charge balancing strategy of MMC with battery energy storage system[J]. Power Electronics, 2020, 54 (4): 17- 20. | |
19 |
陈强, 张鲁华, 吴延俊, 等. 储能型MMC换流器的SOC均衡策略研究[J]. 电测与仪表, 2020, 57 (5): 37- 43.
DOI |
CHEN Qiang, ZHANG Luhua, WU Yanjun, et al. Study on SOC balanced control strategy of MMC based BESS[J]. Electrical Measurement & Instrumentation, 2020, 57 (5): 37- 43.
DOI |
|
20 | 李楠, 张磊, 马士聪, 等. 基于模块化多电平换流器的电池储能系统控制策略[J]. 电力系统自动化, 2017, 41 (9): 144- 150. |
LI Nan, ZHANG Lei, MA Shicong, et al. Control strategy for battery energy storage system based on modular multilevel converters[J]. Automation of Electric Power Systems, 2017, 41 (9): 144- 150. | |
21 | 郭龙, 梁晖, 张维戈. 基于模块化多电平变流器的电池储能系统荷电状态均衡控制策略[J]. 电网技术, 2017, 41 (8): 2688- 2697. |
GUO Long, LIANG Hui, ZHANG Weige. State-of-charge balancing control strategy for battery energy storage system based on modular multi-level converter[J]. Power System Technology, 2017, 41 (8): 2688- 2697. | |
22 |
程从智, 徐晨, 戴珂, 等. MMC-BESS电池荷电状态三级均衡控制策略[J]. 电力系统保护与控制, 2021, 49 (15): 100- 108.
DOI |
CHENG Congzhi, XU Chen, DAI Ke, et al. Three-level balancing control for battery state-of-charge based on MMC-BESS[J]. Power System Protection and Control, 2021, 49 (15): 100- 108.
DOI |
|
23 |
VASILADIOTIS M, RUFER A. Analysis and control of modular multilevel converters with integrated battery energy storage[J]. IEEE Transactions on Power Electronics, 2015, 30 (1): 163- 175.
DOI |
24 |
贺坤, 王灿, 张坎, 等. 不平衡网压下MMC-BESS的新型SOC均衡控制研究[J]. 电气传动, 2022, 52 (23): 45- 52.
DOI |
HE Kun, WANG Can, ZHANG Kan, et al. Research on new SOC equalization control of MMC-BESS under unbalanced network voltage[J]. Electric Drive, 2022, 52 (23): 45- 52.
DOI |
|
25 | 徐政, 肖晃庆, 张哲任. 柔性直流输电系统[M]. 2版. 北京: 机械工业出版社, 2017. |
[1] | 潘鹏程, 韩文舜, 郭雪丽. 基于有源和无源阻尼协同控制的光伏直流升压汇集系统谐振抑制[J]. 中国电力, 2025, 58(3): 20-30. |
[2] | 刘瑶, 李子恒, 郑子萱, 宋东徽, 李小腾, 张丁, 任杰, 谢琦. 基于短路容量量化评估的断面极限功率解析计算方法[J]. 中国电力, 2025, 58(3): 98-107. |
[3] | 沈舒仪, 王国腾, 但扬清, 孙飞飞, 黄莹, 徐政. 频率偏差与电压刚度约束下多馈入直流优化调度方法[J]. 中国电力, 2025, 58(3): 132-141. |
[4] | 辛业春, 李尚轩, 王延旭, 朱益华, 余佳微, 常东旭. 基于直流电流反馈的MMC-HVDC系统的中高频振荡抑制策略[J]. 中国电力, 2025, 58(1): 39-49. |
[5] | 赵晨浩, 焦在滨, 李程昊, 张迪, 张鹏辉. 基于主动迁移学习的电力系统暂态稳定自适应评估[J]. 中国电力, 2025, 58(1): 70-77. |
[6] | 董武, 张健, 周勤勇, 张立波, 龚浩岳. 中国电力系统安全稳定性演化综述[J]. 中国电力, 2025, 58(1): 115-127. |
[7] | 李碧君, 李威, 董希建. 新型电力系统中主控型安全稳定服务质量的在线评估[J]. 中国电力, 2024, 57(8): 168-181. |
[8] | 李佳蔚, 张冠宇. 大规模分布式新能源接入对省级电网稳定性影响[J]. 中国电力, 2024, 57(6): 174-180. |
[9] | 周生存, 罗毅, 易煊承, 吴亚宁, 李丁, 熊逸. 考虑数据缺失的图注意力网络暂态稳定评估[J]. 中国电力, 2024, 57(5): 157-167. |
[10] | 胡锐, 武书洲, 李永华, 乔加飞. 内陆复杂风电场风速垂直外推模型研究[J]. 中国电力, 2024, 57(5): 232-239. |
[11] | 刘道兵, 齐越, 李世春, 鲍妙生, 郭营营, 李珏岑. 考虑极限诱导分岔的静态电压稳定域[J]. 中国电力, 2024, 57(4): 118-129. |
[12] | 娄奇鹤, 李荣盛, 谭捷, 袁铁江. 基于卷积神经网络的暂稳极限功率计算[J]. 中国电力, 2024, 57(4): 211-219. |
[13] | 白望望, 杨德州, 李万伟, 王涛, 张耀忠. 基于HC-MOPSO的储能电站两阶段选址定容方法[J]. 中国电力, 2024, 57(12): 148-156. |
[14] | 马喜平, 李亚昕, 梁琛, 董晓阳, 徐瑞. 考虑高比例多元调节资源互动的配电网无功优化降损方法[J]. 中国电力, 2024, 57(1): 123-132. |
[15] | 徐佳, 杨树德, 张新闻. 基于并网电流谐波反馈的有源阻尼策略[J]. 中国电力, 2023, 56(8): 126-135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||