中国电力 ›› 2016, Vol. 49 ›› Issue (7): 54-59.DOI: 10.11930/j.issn.1004-9649.2016.07.054.06

• 电网 • 上一篇    下一篇

基于优化广义回归神经网络的变电站设备温度预测

孔雪卉, 张慧芬   

  1. 济南大学 自动化与电气工程学院,山东 济南 250022
  • 收稿日期:2015-10-08 出版日期:2016-07-20 发布日期:2016-07-28
  • 作者简介:孔雪卉(1989—),女,天津人,硕士研究生,从事智能电网控制技术方面的研究。E-mail: xhkong@163.com

Temperature Forecast for Substation Equipment Based on Optimized General Regression Neural Network

KONG Xuehui, ZHANG Huifen   

  1. School of Electrical Engineering, University of Jinan, Jinan 250022, China
  • Received:2015-10-08 Online:2016-07-20 Published:2016-07-28

摘要: 变电站设备温度情况是反映设备是否正常运行的一个重要指标,对设备温度进行及时的预测能够保证电力系统高效、稳定运行。针对高压设备温度存在非线性、随机性等特点,应用广义回归神经网络(GRNN)对其进行预测。运用K-近邻思想和多轮投票机制确定最优平滑因子,对GRNN进行优化。结合某变电站的设备温度历史数据,以高压开关柜为例,划分训练样本和预测样本,建立了基于优化GRNN的高压开关柜温度预测模型。Matlab仿真实验表明:优化的GRNN预测结果优于BP神经网络的预测结果,在训练速度和预测精度上都有显著提高。

关键词: 变电站, 温度预测, 优化的GRNN算法, K-近邻, 平滑因子

Abstract: The temperature of substation equipments is an important indicator of device operation condition. Timely equipment temperature prediction guarantees power system operation efficiency and stability. Because of nonlinear and stochastic characteristics of equipment temperature, a generalized regression neural network(GRNN) model is applied to temperature prediction. The optimal soothing factor of GRNN is determined by K-nearest neighbor and multiple rounds of voting. Based on temperature history data of one substation equipment, taken a high voltage switch cabinet as example, a high voltage switch cabinet temperature forecast model is built based on optimized GRNN. The MATLAB simulation results show that proposed model generates better results compare to BP neural network with significant improvement on training speed and prediction accuracy.

Key words: substation, temperature forecast, optimized GRNN algorithm, K-nearest neighbor, smoothing factor

中图分类号: