中国电力 ›› 2024, Vol. 57 ›› Issue (11): 173-182.DOI: 10.11930/j.issn.1004-9649.202311104
李骏龙1(), 尤培培1(
), 张超1, 方鲁睿2, 张文哲3
收稿日期:
2023-11-21
接受日期:
2024-10-10
出版日期:
2024-11-28
发布日期:
2024-11-27
作者简介:
李骏龙(1996—),男,博士,从事电力价格机制、电力市场与电力系统优化规划研究,E-mail:lijunlong@sgeri.sgcc.com.cn基金资助:
Junlong LI1(), Peipei YOU1(
), Chao ZHANG1, Lurui FANG2, Wenzhe ZHANG3
Received:
2023-11-21
Accepted:
2024-10-10
Online:
2024-11-28
Published:
2024-11-27
Supported by:
摘要:
建立合理的分时电价机制是以度电价格信号激励用户提供负荷灵活性的重要手段,也是直接影响用户电力成本的关键政策。近年来,随着新型电力系统加快建设,中国各地区相继优化调整了分时电价政策。在梳理分时电价政策最新调整情况的基础上,构建了基于双重差分法计算分时电价对用户度电成本净影响的模型,并对双重差分法得到的政策效果系数进行解耦,通过多元回归模型得到分时电价机制对度电成本的作用机理。基于2022年与2023年7月多地区已执行和未执行分时电价的不同电力用户的真实度电成本数据,分析了分时电价对各地区、各类别、各电压等级用户的政策效果与基本规律,验证了系数解耦回归模型的准确性。最后,基于该系数解耦回归模型,分析了不同价比关系下分时电价政策对商业用户度电成本的影响,并发现适当的尖峰、峰段电价的价比关系可以实现度电成本的最小化。
李骏龙, 尤培培, 张超, 方鲁睿, 张文哲. 基于双重差分模型的分时电价机制对用电成本的影响分析[J]. 中国电力, 2024, 57(11): 173-182.
Junlong LI, Peipei YOU, Chao ZHANG, Lurui FANG, Wenzhe ZHANG. Analysis on the Effect of Time-of-Use Electricity Price on Electricity Cost Based on Difference-in-Differences Model[J]. Electric Power, 2024, 57(11): 173-182.
图 1 各地区居民用户度电成本外因变化、政策效果及分时电价峰谷价比
Fig.1 External and TOU effects on cost per kW·h of the electricity of residential customers from different provinces, and related peak-valley ratios of TOU prices
用户类别 | 电压等级/kV | 度电成本变化/(元·(MW·h)–1) | ||||
外因变化 | 政策效果 | |||||
非、普通工业 | ≤0.4 | 27.82 | –54.17 | |||
1~10 | 4.39 | –36.79 | ||||
35(含20) | 13.62 | –20.70 | ||||
110(含66) | 16.43 | –39.15 | ||||
非居民照明 | ≤0.4 | –61.97 | –48.68 | |||
1~10 | 3.96 | –20.07 | ||||
35(含20) | 14.05 | –49.73 | ||||
110(含66) | 43.27 | 26.65 | ||||
220 | 44.92 | –27.21 | ||||
商业 | ≤0.4 | 41.89 | –3.83 | |||
1~10 | 44.69 | –12.03 | ||||
35(含20) | 26.11 | –11.17 |
表 1 各类别各电压等级一般工商业用户外因变化及分时电价政策效果
Table 1 External and TOU effects of general industrial and commercial electricity customers with different voltage levels
用户类别 | 电压等级/kV | 度电成本变化/(元·(MW·h)–1) | ||||
外因变化 | 政策效果 | |||||
非、普通工业 | ≤0.4 | 27.82 | –54.17 | |||
1~10 | 4.39 | –36.79 | ||||
35(含20) | 13.62 | –20.70 | ||||
110(含66) | 16.43 | –39.15 | ||||
非居民照明 | ≤0.4 | –61.97 | –48.68 | |||
1~10 | 3.96 | –20.07 | ||||
35(含20) | 14.05 | –49.73 | ||||
110(含66) | 43.27 | 26.65 | ||||
220 | 44.92 | –27.21 | ||||
商业 | ≤0.4 | 41.89 | –3.83 | |||
1~10 | 44.69 | –12.03 | ||||
35(含20) | 26.11 | –11.17 |
图 3 各地区0.4 kV及以下商业用户度电成本外因变化、政策效果及分时电价尖峰段上浮比例
Fig.3 External and TOU effects of commercial electricity customers of 0.4 kV and below in different provinces with related peak ratios of TOU prices
回归模型类型 | r2检验值 | |||||||||
居民 | 大工业 | 商业 | ||||||||
1~ 10 kV | 110 kV | 220 kV | ||||||||
0.62 | 0.75 | 0.26 | 0.31 | 0.78 | ||||||
0.85 | 0.91 | 0.64 | 0.65 | 0.90 | ||||||
0.95 | 0.99 | 0.98 | 0.99 | 0.99 |
表 2 各类回归模型相关性检验结果
Table 2 Correlation test results of various regression models for residential customers (large industrial electricity customers)
回归模型类型 | r2检验值 | |||||||||
居民 | 大工业 | 商业 | ||||||||
1~ 10 kV | 110 kV | 220 kV | ||||||||
0.62 | 0.75 | 0.26 | 0.31 | 0.78 | ||||||
0.85 | 0.91 | 0.64 | 0.65 | 0.90 | ||||||
0.95 | 0.99 | 0.98 | 0.99 | 0.99 |
变量 | 回归系数 | 变量 | 回归系数 | |||
–2.28 | 4.58 | |||||
0.01 | 3.35 | |||||
3.57 | –0.07 | |||||
–5.02 | –10.08 | |||||
–9.54 | –2.84 | |||||
–8.80 | –1.20 | |||||
0.44 | 5.60 | |||||
2.48 |
表 3 回归模型中各系数拟合结果(0.4 kV及以下商业用户)
Table 3 Fitting results of coefficients in regression models (commercial electricity customers of 0.4 kV and below)
变量 | 回归系数 | 变量 | 回归系数 | |||
–2.28 | 4.58 | |||||
0.01 | 3.35 | |||||
3.57 | –0.07 | |||||
–5.02 | –10.08 | |||||
–9.54 | –2.84 | |||||
–8.80 | –1.20 | |||||
0.44 | 5.60 | |||||
2.48 |
图 5 安徽0.4 kV及以下商业用户政策效果与尖峰、峰段、谷段比例的变化关系
Fig.5 Correlation between TOU effect on electricity cost and critical peak , peak and valley ratio of TOU for commercial electricity customers of 0.4 kV and below in Anhui province
图 6 安徽0.4 kV及以下商业用户政策效果与尖峰和峰段上浮比例耦合作用的变化关系
Fig.6 Correlation among TOU effect on electricity cost, critical peak ratio and peak ratio for commercial electricity customers of 0.4 kV and below in Anhui province
1 | 李东东, 汪露璐, 王维等. 考虑源荷互动的综合能源系统多目标双层规划[J]. 电网技术, 2024, 48 (2): 527- 542. |
LI Dongdong, WANG Luwei, WANG Wei, et al. Multi-objective bi-level planning for integrated energy systems considering source-load interaction[J]. Power System Technology, 2024, 48 (2): 527- 542. | |
2 |
万灿, 宋永华. 新能源电力系统概率预测理论与方法及其应用[J]. 电力系统自动化, 2021, 45 (1): 2- 16.
DOI |
WAN Can, SONG Yonghua. Theories, methodologies and applications of probabilistic forecasting for power systems with renewable energy sources[J]. Automation of Electric Power Systems, 2021, 45 (1): 2- 16.
DOI |
|
3 | 柳启俊. 面向智能电网的需求侧响应及其居民电价研究[D]. 北京: 华北电力大学, 2016. |
LIU Qijun. Electrical demand response in smart grid and its research of residential electrovalency[D]. Beijing: North China Electric Power University, 2016. | |
4 |
欧华钰. 需求响应背景下分时电价研究综述[J]. 电气开关, 2023, 61 (5): 6- 11, 17.
DOI |
OU Huayu. Summary of time-of-use research in a demand response environment[J]. Electric Switchgear, 2023, 61 (5): 6- 11, 17.
DOI |
|
5 | 黄剑平. 基于用户响应行为的峰谷分时电价优化策略研究[D]. 广州: 华南理工大学, 2022. |
HUANG Jianping. Research on the optimization strategy for time-of-use prices based on customer response behavior[D]. Guangzhou: South China University of Technology, 2022. | |
6 | 黄刚. V2G模式下峰谷电价方案评估模型研究[D]. 宜昌: 三峡大学, 2018. |
HUANG Gang. Study on the evaluation model of peak valley electricity price scheme under V2G model[D]. Yichang: China Three Gorges University, 2018. | |
7 | 付强. 考虑峰谷分时电价影响的电网规划及其经济效益分析研究[D]. 长沙: 湖南大学, 2018. |
FU Qiang. Research on power grid planning considering influence of peak-valley time-of-use power price and its economic benefits analysis[D]. Changsha: Hunan University, 2018. | |
8 | 李国荣. 基于用户需求响应的分时电价优化研究[D]. 南京: 南京邮电大学, 2023. |
LI Guorong. Research on time-of-use price optimization based on user's demand response[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2023. | |
9 | 汪磊, 杨贺钧, 马英浩, 等. 考虑多重评价指标的多时段分时电价优化模型[J]. 中国电力, 2019, 52 (6): 54- 59. |
WANG Lei, YANG Hejun, MA Yinghao, et al. Optimization model of multi-period time of use strategy considering multiple assessment indices[J]. Electric Power, 2019, 52 (6): 54- 59. | |
10 |
王星华, 刘升伟, 陈豪君, 等. 考虑用户差异性的售电公司需求响应电价模型[J]. 电力建设, 2019, 40 (9): 116- 123.
DOI |
WANG Xinghua, LIU Shengwei, CHEN Haojun, et al. Demand response pricing model for power sales companies considering user differences[J]. Electric Power Construction, 2019, 40 (9): 116- 123.
DOI |
|
11 | 谈金晶, 王蓓蓓, 李扬. 基于多智能体的用户分时电价响应模型[J]. 电网技术, 2012, 36 (2): 257- 263. |
TAN Jinjing, WANG Beibei, LI Yang. Modeling of user response to time-of-use price based on multi-agent technology[J]. Power System Technology, 2012, 36 (2): 257- 263. | |
12 |
石宇航. 降低企业用电成本案例分析[J]. 中国电力企业管理, 2018, (13): 44- 45.
DOI |
13 | 方彬楠, 冉黎黎. 引导工商业错峰用电 北京分时电价进阶[N]. 北京商报, 2023-08-22(002). |
14 |
张延伟, 高昌辉. 中国省域间碳排放权交易机制检验——基于双重差分法[J]. 时代经贸, 2023, 20 (9): 5- 9.
DOI |
15 | 杨新梅, 周瑞辉. 设立国家高新区能否驱动城市绿色发展: 基于双重差分法的经验数据[J]. 中国环境管理, 2023, 15 (3): 51- 61. |
YANG Xinmei, ZHOU Ruihui. Can national high-tech zones drive urban green development? —empirical data based on DID[J]. Chinese Journal of Environmental Management, 2023, 15 (3): 51- 61. | |
16 | 张科, 熊子怡, 黄细嘉, 等. 红色旅游发展与革命老区城乡收入差距——基于双重差分法的经验分析[J]. 中国农村经济, 2023, (5): 103- 121. |
ZHANG Ke, XIONG Ziyi, HUANG Xijia, et al. Red tourism and urban-rural income gap in old revolutionary base areas: an empirical analysis based on the difference-in-differences method[J]. Chinese Rural Economy, 2023, (5): 103- 121. | |
17 |
赖玲玲, 程跃. 战略性新兴产业政策对企业创新绩效的影响研究——基于双重差分法的准自然实验[J]. 现代管理科学, 2022, (5): 98- 108.
DOI |
18 | 翟玉鹏, 曹俊文. 基于双重差分法的我国差别电价政策对电力消费强度影响研究[J]. 电力与能源, 2018, 39 (6): 725- 732. |
ZHAI Yupeng, CAO Junwen. Influence of China's differential price policy on electricity consumption intensity based on difference-in-difference method[J]. Power & Energy, 2018, 39 (6): 725- 732. | |
19 | 刘力铭. 分时电价项目下负荷削峰效果的影响因子识别与分析研究[D]. 保定: 华北电力大学(保定), 2019. |
LIU Liming. Research on identification and analysis of impact factors for peak demand reduction under the time of use programs [D]. Baoding: North China Electric Power University, 2019. | |
20 | 唐文升, 王阳, 张煜等. 基于多维价格弹性系数的分时电价对负荷特性影响机理[J]. 中国电力, 2024, 57 (2): 202- 211. |
TANG Wensheng, WANG Yang, ZHANG Yu, et al. Influence mechanism of time-of-use electricity prices on industry load characteristics based on multi-dimensional price elasticity coefficient matrix[J]. Electric Power, 2024, 57 (2): 202- 211. | |
21 | 田佳垚, 冯自平, 胡亚飞等. 基于多元回归模型的燃气热泵系统制热性能分析[J]. 热能动力工程, 2023, 38 (6): 129- 136. |
TIAN Jiayao, FENG Ziping, HU Yafei, et al. Analysis of heating performance of gas engine-driven heat pump system based on multiple regression model[J]. Journal of Engineering for Thermal Energy and Power, 2023, 38 (6): 129- 136. |
[1] | 唐文升, 王阳, 张煜, 刘席洋, 谭清坤, 吴鹏, 陈宋宋, 杨菁. 基于多维价格弹性系数的分时电价对负荷特性影响机理[J]. 中国电力, 2024, 57(2): 202-211. |
[2] | 冯云辰, 加鹤萍, 闫敏, 李根柱, 刘乐, 刘敦楠. 基于风电分时电价的虚拟电厂参与清洁供暖运营优化方法[J]. 中国电力, 2024, 57(1): 51-60. |
[3] | 时珊珊, 魏新迟, 张宇, 王育飞, 方陈, 王皓靖. 考虑多模式融合的光储充电站储能系统优化运行策略[J]. 中国电力, 2023, 56(3): 144-153,161. |
[4] | 韩子颜, 王守相, 赵倩宇, 郑志杰. 计及分时电价的5 G基站光储系统容量优化配置方法[J]. 中国电力, 2022, 55(9): 8-15. |
[5] | 黄剑平, 陈皓勇, 钟佳宇, 陈武涛, 段声志, 郑晓东. 基于用户成本选择用户范围的分时电价最优策略[J]. 中国电力, 2020, 53(9): 107-116. |
[6] | 杨建华, 王雄飞, 肖达强, 赵佳伟, 刘敦楠. 促进新能源消纳的交易机制及效益研究[J]. 中国电力, 2020, 53(4): 89-95. |
[7] | 黄碧斌, 张运洲, 王彩霞. 中国“十四五”新能源发展研判及需要关注的问题[J]. 中国电力, 2020, 53(1): 1-9. |
[8] | 汪磊, 杨贺钧, 马英浩, 张大波. 考虑多重评价指标的多时段分时电价优化模型[J]. 中国电力, 2019, 52(6): 54-59. |
[9] | 谭显东, 陈玉辰, 李扬, 井江波, 姜宁, 王子健, 沈运帷. 考虑负荷发展和用户行为的分时电价优化研究[J]. 中国电力, 2018, 51(7): 136-144. |
[10] | 李刚, 李峰, 孔亮, 宋宗勋. 不同电价下含储能系统的微电网经济调度[J]. 中国电力, 2018, 51(2): 125-132. |
[11] | 刘树勇, 李娜, 符景帅. 基于高维赋范与SGHSA算法的用电峰谷时段划分模型[J]. 中国电力, 2018, 51(1): 179-184. |
[12] | 侯慧, 樊浩, 谢俊, 罗俊阳, 柯贤斌, 王成智. 分时电价下价格理性用户最优充电策略[J]. 中国电力, 2018, 51(1): 171-178. |
[13] | 张运洲, 黄碧斌. 中国新能源发展成本分析和政策建议[J]. 中国电力, 2018, 51(1): 10-15. |
[14] | 李娜, 张文月, 王玉玮, 符景帅, 王炜劼, 王麟. 基于数据均值化及LSSVM算法的峰谷电价需求响应模型[J]. 中国电力, 2016, 49(9): 137-141. |
[15] | 曹昉,蔡悦,李成仁,尤培培. 考虑分时潮流追踪和最大负荷责任的输电固定成本分摊方法[J]. 中国电力, 2016, 49(8): 116-120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||