中国电力 ›› 2024, Vol. 57 ›› Issue (2): 202-211.DOI: 10.11930/j.issn.1004-9649.202304028
唐文升1(), 王阳1(
), 张煜2(
), 刘席洋3(
), 谭清坤2(
), 吴鹏2(
), 陈宋宋4(
), 杨菁5(
)
收稿日期:
2023-04-06
接受日期:
2023-09-18
出版日期:
2024-02-28
发布日期:
2024-02-28
作者简介:
唐文升(1968—),男,硕士,高级经济师,从事电力市场营销工作,E-mail:wensheng-tang@sgcc.com.cn基金资助:
Wensheng TANG1(), Yang WANG1(
), Yu ZHANG2(
), Xiyang LIU3(
), Qingkun TAN2(
), Peng WU2(
), Songsong CHEN4(
), Jing YANG5(
)
Received:
2023-04-06
Accepted:
2023-09-18
Online:
2024-02-28
Published:
2024-02-28
Supported by:
摘要:
基于23个省级电力公司经营区各行业固定用户群负荷曲线,测算多维价格弹性系数评估分时电价调整对各地区各行业峰谷时段用电的影响,并分析峰谷段电力需求对多维价格指标的敏感性。利用多维价格弹性系数定量评估各地区各行业降低峰段电量、提升谷段电量、缩小负荷峰谷差率三维电力电量指标对提高高峰时段电价、降低低谷时段电价、拉大峰谷电价比三维价格指标的敏感性。根据多维价格弹性系数分析结果可针对不同地区、行业、时段提出分时电价优化调整策略。
唐文升, 王阳, 张煜, 刘席洋, 谭清坤, 吴鹏, 陈宋宋, 杨菁. 基于多维价格弹性系数的分时电价对负荷特性影响机理[J]. 中国电力, 2024, 57(2): 202-211.
Wensheng TANG, Yang WANG, Yu ZHANG, Xiyang LIU, Qingkun TAN, Peng WU, Songsong CHEN, Jing YANG. Influence Mechanism of Time-of-Use Electricity Prices on Industry Load Characteristics Based on Multi-dimensional Price Elasticity Coefficient Matrix[J]. Electric Power, 2024, 57(2): 202-211.
省(区) | 峰谷差率 减小率 Y1 | 峰段电量 转移率 Y2 | 谷段电量 填充率 Y3 | 峰谷电量 转移率 Y4 | ||||
浙江 | –0.67 | –0.70 | 0.76 | 1.46 | ||||
湖南 | –3.01 | –0.47 | 0.83 | 1.30 | ||||
甘肃 | –2.54 | –3.67 | 1.99 | 5.66 | ||||
宁夏 | –2.83 | –0.08 | –1.28 | –1.20 |
表 1 各地区农业分时电价调整效果
Table 1 The effects of the agricultural time-of-use electricity price adjustment in various regions 单位: 个百分点
省(区) | 峰谷差率 减小率 Y1 | 峰段电量 转移率 Y2 | 谷段电量 填充率 Y3 | 峰谷电量 转移率 Y4 | ||||
浙江 | –0.67 | –0.70 | 0.76 | 1.46 | ||||
湖南 | –3.01 | –0.47 | 0.83 | 1.30 | ||||
甘肃 | –2.54 | –3.67 | 1.99 | 5.66 | ||||
宁夏 | –2.83 | –0.08 | –1.28 | –1.20 |
地区 | 峰谷差率 减小率 Y1 | 峰段电量 转移率 Y2 | 谷段电量 填充率 Y3 | 峰谷电量 转移率 Y4 | ||||
四川 | –4.97 | –2.29 | 2.28 | 4.57 | ||||
新疆 | –4.14 | –0.04 | 0.61 | 0.65 | ||||
陕西 | –3.31 | –0.32 | 1.20 | 1.52 | ||||
浙江 | –3.26 | –1.34 | 1.61 | 2.96 | ||||
重庆 | –3.13 | –2.53 | 4.66 | 7.19 | ||||
吉林 | –3.04 | –0.65 | 0.74 | 1.40 | ||||
冀北 | –3.02 | –1.00 | 0.51 | 1.51 | ||||
湖北 | –3.02 | –1.11 | 1.39 | 2.50 | ||||
安徽 | –3.01 | –0.79 | 0.34 | 1.13 | ||||
河南 | –2.88 | –2.04 | 2.60 | 4.64 | ||||
蒙东 | –2.37 | –0.67 | 0.93 | 1.60 | ||||
天津 | –2.16 | 1.47 | 2.04 | 0.57 | ||||
福建 | –1.50 | –0.72 | –0.95 | –0.23 | ||||
江西 | –1.45 | –0.52 | 0.22 | –0.74 | ||||
青海 | –1.34 | –2.92 | 1.56 | 4.48 | ||||
江苏 | –0.73 | –0.35 | –0.10 | –0.25 | ||||
湖南 | –0.61 | –1.41 | 0.07 | 1.48 | ||||
甘肃 | 0.83 | –0.94 | 0.92 | 1.86 |
表 2 各地区大工业分时电价调整效果
Table 2 The adjusted effects of time-of-use electricity prices for large industries in various regions 单位: 个百分点
地区 | 峰谷差率 减小率 Y1 | 峰段电量 转移率 Y2 | 谷段电量 填充率 Y3 | 峰谷电量 转移率 Y4 | ||||
四川 | –4.97 | –2.29 | 2.28 | 4.57 | ||||
新疆 | –4.14 | –0.04 | 0.61 | 0.65 | ||||
陕西 | –3.31 | –0.32 | 1.20 | 1.52 | ||||
浙江 | –3.26 | –1.34 | 1.61 | 2.96 | ||||
重庆 | –3.13 | –2.53 | 4.66 | 7.19 | ||||
吉林 | –3.04 | –0.65 | 0.74 | 1.40 | ||||
冀北 | –3.02 | –1.00 | 0.51 | 1.51 | ||||
湖北 | –3.02 | –1.11 | 1.39 | 2.50 | ||||
安徽 | –3.01 | –0.79 | 0.34 | 1.13 | ||||
河南 | –2.88 | –2.04 | 2.60 | 4.64 | ||||
蒙东 | –2.37 | –0.67 | 0.93 | 1.60 | ||||
天津 | –2.16 | 1.47 | 2.04 | 0.57 | ||||
福建 | –1.50 | –0.72 | –0.95 | –0.23 | ||||
江西 | –1.45 | –0.52 | 0.22 | –0.74 | ||||
青海 | –1.34 | –2.92 | 1.56 | 4.48 | ||||
江苏 | –0.73 | –0.35 | –0.10 | –0.25 | ||||
湖南 | –0.61 | –1.41 | 0.07 | 1.48 | ||||
甘肃 | 0.83 | –0.94 | 0.92 | 1.86 |
地区 | 峰谷差率 减小率 Y1 | 峰段电量 转移率 Y2 | 谷段电量 填充率 Y3 | 峰谷电量 转移率 Y4 | ||||
安徽 | –5.40 | –1.73 | 5.02 | 6.75 | ||||
天津 | –4.71 | –1.29 | 5.25 | 6.54 | ||||
江苏 | –3.73 | –2.58 | 8.31 | 10.89 | ||||
青海 | –3.72 | 1.21 | 0.81 | –0.39 | ||||
吉林 | –3.32 | –1.73 | 4.22 | 5.94 | ||||
冀北 | –3.30 | –0.70 | 1.50 | 2.19 | ||||
福建 | –3.29 | –0.08 | 0.70 | 0.78 | ||||
河南 | –3.20 | –1.07 | 3.93 | 5.00 | ||||
重庆 | –2.87 | –4.59 | –5.88 | –1.29 | ||||
浙江 | –2.40 | –2.39 | 3.43 | 5.82 | ||||
新疆 | –2.31 | –0.09 | 0.48 | 0.57 | ||||
江西 | –2.28 | –0.23 | 0.25 | 0.48 | ||||
蒙东 | –2.27 | –0.65 | 0.15 | 0.80 | ||||
四川 | –2.22 | –1.56 | 2.14 | 3.70 | ||||
湖南 | –1.57 | –1.14 | 0.30 | 1.44 | ||||
甘肃 | –1.32 | –3.03 | –2.48 | 0.55 | ||||
湖北 | –0.68 | –0.69 | 0.01 | 0.69 | ||||
陕西 | –0.18 | –0.47 | 0.81 | 1.28 |
表 3 各地区一般工商业分时电价调整效果
Table 3 The adjusted effects of time-of-use electricity prices for general industry and commerce in various regions 单位: 个百分点
地区 | 峰谷差率 减小率 Y1 | 峰段电量 转移率 Y2 | 谷段电量 填充率 Y3 | 峰谷电量 转移率 Y4 | ||||
安徽 | –5.40 | –1.73 | 5.02 | 6.75 | ||||
天津 | –4.71 | –1.29 | 5.25 | 6.54 | ||||
江苏 | –3.73 | –2.58 | 8.31 | 10.89 | ||||
青海 | –3.72 | 1.21 | 0.81 | –0.39 | ||||
吉林 | –3.32 | –1.73 | 4.22 | 5.94 | ||||
冀北 | –3.30 | –0.70 | 1.50 | 2.19 | ||||
福建 | –3.29 | –0.08 | 0.70 | 0.78 | ||||
河南 | –3.20 | –1.07 | 3.93 | 5.00 | ||||
重庆 | –2.87 | –4.59 | –5.88 | –1.29 | ||||
浙江 | –2.40 | –2.39 | 3.43 | 5.82 | ||||
新疆 | –2.31 | –0.09 | 0.48 | 0.57 | ||||
江西 | –2.28 | –0.23 | 0.25 | 0.48 | ||||
蒙东 | –2.27 | –0.65 | 0.15 | 0.80 | ||||
四川 | –2.22 | –1.56 | 2.14 | 3.70 | ||||
湖南 | –1.57 | –1.14 | 0.30 | 1.44 | ||||
甘肃 | –1.32 | –3.03 | –2.48 | 0.55 | ||||
湖北 | –0.68 | –0.69 | 0.01 | 0.69 | ||||
陕西 | –0.18 | –0.47 | 0.81 | 1.28 |
图 3 各地区一般工商业负荷对多维价格指标的敏感性分类
Fig.3 The sensitivity classification of general industrial and commercial loads in various regions to multi-dimensional price indicators
1 | 钟锐, 易庚, 宋新甫. 分时电价政策分析与完善建议[J]. 中国电力企业管理, 2022, (16): 64- 65. |
2 |
张若愚, 刘敏, 李震. 基于价格弹性矩阵的用户响应潜力评估方法[J]. 电力科学与工程, 2022, 38 (7): 17- 24.
DOI |
ZHANG Ruoyu, LIU Min, LI Zhen. Evaluation method of user response potential based on price elasticity matrix[J]. Electric Power Science and Engineering, 2022, 38 (7): 17- 24.
DOI |
|
3 |
徐广达, 张利, 梁军, 等. 基于设备用电特征的居民电力需求价格弹性评估[J]. 电力系统自动化, 2020, 44 (13): 48- 55.
DOI |
XU Guangda, ZHANG Li, LIANG Jun, et al. Estimation of price elasticity for residential electricity demand based on electricity consumption features of appliances[J]. Automation of Electric Power Systems, 2020, 44 (13): 48- 55.
DOI |
|
4 |
刘自敏, 杨丹, 冯永晟. 阶梯定价调整、需求弹性测度与中国电价政策评估[J]. 财经问题研究, 2017, (2): 35- 42.
DOI |
LIU Zimin, YANG Dan, FENG Yongsheng. Tiered pricing adjustment, measurement of demand elasticity, and evaluation of China's electricity price policy[J]. Research on Financial and Economic Issues, 2017, (2): 35- 42.
DOI |
|
5 |
李虹, 王帅, 李晨光, 等. 电价调整对宏观经济及产业结构的影响[J]. 资源科学, 2022, 44 (1): 156- 168.
DOI |
LI Hong, WANG Shuai, LI Chenguang, et al. Impact of electricity price adjustment on macro economy and industrial structure[J]. Resources Science, 2022, 44 (1): 156- 168.
DOI |
|
6 | 许杰, 黎珍羽, 闫敬德. 碳达峰、碳中和目标下工业企业电价承受能力研究: 基于对甘肃省工业企业电价承受能力相关数据的测算与比较[J]. 价格理论与实践, 2021, (8): 78- 81. |
XU Jie, LI Zhenyu, YAN Jingde. Analysis on the industrial enterprise's electrovalence affordability and strategy under the goal of carbon peak and carbon neutrality—based on the calculation and comparison of data related to industrial enterprise's electrovalence affordability in Gansu[J]. Price:Theory & Practice, 2021, (8): 78- 81. | |
7 | 丁伟斌. 电价政策调整对工商业用户用电影响研究: 基于浙江省企业调研数据的分析[J]. 价格理论与实践, 2021, (12): 38- 43. |
DING Weibin. Impacts of electricity price policy adjustment on electricity consumption of industrial and commercial users: empirical study based on enterprise survey data in Zhejiang province[J]. Price:Theory & Practice, 2021, (12): 38- 43. | |
8 |
刘浩田, 陈锦, 朱熹, 等. 一种基于价格弹性矩阵的居民峰谷分时电价激励策略[J]. 电力系统保护与控制, 2021, 49 (5): 116- 123.
DOI |
LIU Haotian, CHEN Jin, ZHU Xi, et al. An incentive strategy of residential peak-valley price based on price elasticity matrix of demand[J]. Power System Protection and Control, 2021, 49 (5): 116- 123.
DOI |
|
9 |
赵爽, 林铮, 付娅璐, 等. 考虑电力用户响应特性的分时电价规划研究[J]. 电力科学与工程, 2022, 38 (8): 56- 62.
DOI |
ZHAO Shuang, LIN Zheng, FU Yalu, et al. Time-of-use electricity price planning considering power user response characteristics[J]. Electric Power Science and Engineering, 2022, 38 (8): 56- 62.
DOI |
|
10 |
张效言, 李先允. 计及需求响应的峰谷分时电价研究[J]. 电气自动化, 2022, 44 (3): 25- 27.
DOI |
ZHANG Xiaoyan, LI Xianyun. Research on peak and valley time-of-use electricity price considering demand response[J]. Electrical Automation, 2022, 44 (3): 25- 27.
DOI |
|
11 |
郭曼兰, 陈皓勇, 肖文平, 等. 计及浮动高峰电价的购售双方优化模型[J]. 南方电网技术, 2021, 15 (5): 79- 88.
DOI |
GUO Manlan, CHEN Haoyong, XIAO Wenping, et al. Optimization model for both purchase and sale considering variable peak price[J]. Southern Power System Technology, 2021, 15 (5): 79- 88.
DOI |
|
12 | 李艳梅, 任恒君, 张致远, 等. 考虑储能系统调度与风电消纳的峰谷分时电价优化模型研究[J]. 电网技术, 2022, 46 (11): 4141- 4149. |
LI Yanmei, REN Hengjun, ZHANG Zhiyuan, et al. Optimization model of peak-valley time-of-use electricity prices considering energy storage system dispatching and wind power consumption[J]. Power System Technology, 2022, 46 (11): 4141- 4149. | |
13 | 况夫良. 电力市场环境下峰谷分时售电定价方法研究[D]. 上海: 上海电力大学, 2022. |
KUANG Fuliang. Research on pricing method of time-of sale in peak-valley under power market environment[D]. Shanghai: Shanghai University of Electric Power, 2022. | |
14 | 万玉良, 尚国政, 刘蒙聪, 等. 考虑源荷不确定性的分时电价动态修正机制研究[J]. 太阳能学报, 2022, 43 (11): 493- 500. |
WAN Yuliang, SHANG Guozheng, LIU Mengcong, et al. Research on dynamic correction mechanism of time-of-use electricity price considering uncertainty of source and load[J]. Acta Energiae Solaris Sinica, 2022, 43 (11): 493- 500. | |
15 | 何英静, 叶泽, 魏文. 考虑用户需求价格弹性的峰谷分时电价时段划分研究[J]. 价格月刊, 2022, (12): 1- 9. |
HE Yingjing, YE Ze, WEI Wen. Research on time division of peak-valley tou tariff considering price elasticity of user demand[J]. Prices Monthly, 2022, (12): 1- 9. | |
16 | 刘思强, 丁娜, 孙英楷, 等. 电价交叉补贴收入再分配效应及阶梯电价改进[J]. 中国电力, 2023, 56 (9): 79- 86. |
LIU Siqiang, DING Na, SUN Yingkai, et al. Income redistribution effect of electricity price cross-subsidies and improvement of ladder electricity price[J]. Electric Power, 2023, 56 (9): 79- 86. | |
17 | 徐庆华, 穆永保, 王自姣. 基于峰谷分时电价的居民生活用电分析[J]. 大众用电, 2022, 37 (4): 19- 20. |
18 | 朱凯. 分时电价下无等待流水车间调度优化研究[D]. 镇江: 江苏大学, 2022. |
ZHU Kai. Research on scheduling optimization of no wait flow shop under time-of-use electricity price[D]. Zhenjiang: Jiangsu University, 2022. | |
19 | 黄姗姗, 叶泽, 罗迈, 等. 中国电力中长期市场分时段交易价格形成机制及模型[J]. 中国电力, 2023, 56 (1): 17- 27. |
HUANG Shanshan, YE Ze, LUO Mai, et al. Time-sharing trading price formation mechanism and model of China’s mid to long-term electricity market[J]. Electric Power, 2023, 56 (1): 17- 27. | |
20 |
薛明远, 叶春明. 基于MOMA算法的分时电价下炼钢生产调度研究[J]. 智能计算机与应用, 2022, 12 (8): 174- 178.
DOI |
XUE Mingyuan, YE Chunming. Research on steelmaking production scheduling under time-sharing electricity prices[J]. Intelligent Computer and Applications, 2022, 12 (8): 174- 178.
DOI |
|
21 | 单葆国, 刘青, 张莉莉, 等. 新形势下 “十四五” 后三年中国电力需求形势研判[J]. 中国电力, 2023, 56 (3): 1- 11. |
SHAN Baoguo, LIU Qing, ZHANG Lili, et al. Analysis of China's power demand situation in the last three years of the "14th five-year plan" under the new situation[J]. Electric Power, 2023, 56 (3): 1- 11. |
[1] | 李骏龙, 尤培培, 张超, 方鲁睿, 张文哲. 基于双重差分模型的分时电价机制对用电成本的影响分析[J]. 中国电力, 2024, 57(11): 173-182. |
[2] | 冯云辰, 加鹤萍, 闫敏, 李根柱, 刘乐, 刘敦楠. 基于风电分时电价的虚拟电厂参与清洁供暖运营优化方法[J]. 中国电力, 2024, 57(1): 51-60. |
[3] | 时珊珊, 魏新迟, 张宇, 王育飞, 方陈, 王皓靖. 考虑多模式融合的光储充电站储能系统优化运行策略[J]. 中国电力, 2023, 56(3): 144-153,161. |
[4] | 韩子颜, 王守相, 赵倩宇, 郑志杰. 计及分时电价的5 G基站光储系统容量优化配置方法[J]. 中国电力, 2022, 55(9): 8-15. |
[5] | 黄剑平, 陈皓勇, 钟佳宇, 陈武涛, 段声志, 郑晓东. 基于用户成本选择用户范围的分时电价最优策略[J]. 中国电力, 2020, 53(9): 107-116. |
[6] | 杨建华, 王雄飞, 肖达强, 赵佳伟, 刘敦楠. 促进新能源消纳的交易机制及效益研究[J]. 中国电力, 2020, 53(4): 89-95. |
[7] | 汪磊, 杨贺钧, 马英浩, 张大波. 考虑多重评价指标的多时段分时电价优化模型[J]. 中国电力, 2019, 52(6): 54-59. |
[8] | 谭显东, 陈玉辰, 李扬, 井江波, 姜宁, 王子健, 沈运帷. 考虑负荷发展和用户行为的分时电价优化研究[J]. 中国电力, 2018, 51(7): 136-144. |
[9] | 李刚, 李峰, 孔亮, 宋宗勋. 不同电价下含储能系统的微电网经济调度[J]. 中国电力, 2018, 51(2): 125-132. |
[10] | 刘树勇, 李娜, 符景帅. 基于高维赋范与SGHSA算法的用电峰谷时段划分模型[J]. 中国电力, 2018, 51(1): 179-184. |
[11] | 侯慧, 樊浩, 谢俊, 罗俊阳, 柯贤斌, 王成智. 分时电价下价格理性用户最优充电策略[J]. 中国电力, 2018, 51(1): 171-178. |
[12] | 李娜, 张文月, 王玉玮, 符景帅, 王炜劼, 王麟. 基于数据均值化及LSSVM算法的峰谷电价需求响应模型[J]. 中国电力, 2016, 49(9): 137-141. |
[13] | 曹昉,蔡悦,李成仁,尤培培. 考虑分时潮流追踪和最大负荷责任的输电固定成本分摊方法[J]. 中国电力, 2016, 49(8): 116-120. |
[14] | 赵胤慧, 鞠立伟, 许长青, 陈致宏, 谭忠富. 基于峰谷分时电价的风火电节能调度优化模型[J]. 中国电力, 2014, 47(2): 32-36. |
[15] | 高文杰, 井天军, 杨明皓, 沈冬. 微电网储能系统控制及其经济调度方法[J]. 中国电力, 2013, 46(1): 11-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||