[1] 朴哲锟, 刘灏, 许苏迪, 等. 基于正交多项式拟合的PMU现场测试参考值计算方法[J]. 电力系统保护与控制, 2022, 50(20): 88–96 PIAO Zhekun, LIU Hao, XU Sudi, et al. Calculation method of a PMU field test reference value based on orthogonal polynomial fitting[J]. Power System Protection and Control, 2022, 50(20): 88–96 [2] 李宁, 郭泽林, 袁铁江, 等. 基于电力量测信息的低压台区电力拓扑生成方法[J]. 分布式能源, 2020, 5(5): 48–55 LI Ning, GUO Zelin, YUAN Tiejiang, et al. Power topology generation method in low-voltage transformer area based on electric power metrical information[J]. Distributed Energy, 2020, 5(5): 48–55 [3] 余高旺, 方陈, 樊占峰, 等. 基于汉宁窗的配电网同步相量测量装置算法及应用[J]. 中国电力, 2022, 55(6): 18–24 YU Gaowang, FANG Chen, FAN Zhanfeng, et al. Research and application of algorithm for distribution network synchronous phasor measurement unit based on hanning window[J]. Electric Power, 2022, 55(6): 18–24 [4] 朱征, 李依泽, 顾黎强, 等. 新型配电网同步相量装置测试与实际电网应用[J]. 电工电能新技术, 2021, 40(4): 27–34 ZHU Zheng, LI Yize, GU Liqiang, et al. Test and application of novel synchronous phasor device for distribution networks[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(4): 27–34 [5] PINTE B, QUINLAN M, REINHARD K. Low voltage micro-phasor measurement unit (μPMU)[C]//2015 IEEE Power and Energy Conference at Illinois (PECI). Champaign, IL, USA. IEEE, 2015: 1–4. [6] HAMPANNAVAR S, B D, M S. Micro phasor measurement unit (μPMU) placement for maximum observability in smart distribution network[C]//2021 IEEE PES/IAS PowerAfrica. Nairobi, Kenya. IEEE, 2021: 1–5. [7] LUO C C, LIU C W. Design and implementation of dual time synchronization signal for micro phasor measurement unit (μPMU)[C]//2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings. Taipei, China. IEEE, 2016: 1–6. [8] 薛安成, 徐飞阳, 游宏宇, 等. 基于微型PMU的配电线路抗差参数辨识[J]. 电力自动化设备, 2019, 39(2): 1–7, 43 XUE Ancheng, XU Feiyang, YOU Hongyu, et al. Robust parameter identification of distribution line based on micro PMU[J]. Electric Power Automation Equipment, 2019, 39(2): 1–7, 43 [9] 李江, 徐志临, 李国庆, 等. 配电网微型PMU与故障录波装置研究与开发[J]. 电力自动化设备, 2016, 36(9): 54–59 LI Jiang, XU Zhilin, LI Guoqing, et al. Research and development of micro PMU and fault wave recording device for distribution network[J]. Electric Power Automation Equipment, 2016, 36(9): 54–59 [10] VON MEIER A, CULLER D, MCEACHERN A, et al. Micro-synchrophasors for distribution systems[C]//ISGT. Washington, DC, USA. IEEE, 2014: 1–5. [11] 杨冬锋, 付强, 刘晓军, 等. 配电网动态拓扑与线路参数联合在线辨识方法[J]. 电力系统自动化, 2022, 46(2): 101–108 YANG Dongfeng, FU Qiang, LIU Xiaojun, et al. Joint online identification method for dynamic topology and line parameters of distribution network[J]. Automation of Electric Power Systems, 2022, 46(2): 101–108 [12] 宁家鑫, 刘羽霄, 章家维, 等. 数据驱动的三相配电网络拓扑与线路参数辨识[J]. 中国电机工程学报, 2021, 41(8): 2615–2628 NING Jiaxin, LIU Yuxiao, ZHANG Jiawei, et al. Data-driven topology and line parameter identification of three-phase distribution grid[J]. Proceedings of the CSEE, 2021, 41(8): 2615–2628 [13] 王旭东, 王高猛, 林济铿, 等. 基于AMI量测信息的低压配电网线路参数辨识方法[J]. 中国电力, 2019, 52(5): 63–69 WANG Xudong, WANG Gaomeng, LIN Jikeng, et al. Method for parameter identification of LV distribution network based on AMI metering data[J]. Electric Power, 2019, 52(5): 63–69 [14] 赵国栋, 梁睿, 江夏进. 一种附加阻抗法在测量配电网对地参数中的应用[J]. 电测与仪表, 2014, 51(8): 65–68 ZHAO Guodong, LIANG Rui, JIANG Xiajin. The application of an additional impedance method in measuring grounded parameters of power distribution network[J]. Electrical Measurement & Instrumentation, 2014, 51(8): 65–68 [15] 黄璐涵, 熊尉辰, 宋晓林, 等. 基于智能电表量测的低压配电线路参数辨识[J]. 电力系统及其自动化学报, 2022, 34(7): 34–40 HUANG Luhan, XIONG Weichen, SONG Xiaolin, et al. Parameter identification for low-voltage distribution lines based on smart meter measurement[J]. Proceedings of the CSU-EPSA, 2022, 34(7): 34–40 [16] 栾文鹏, 王兵, 周宁, 等. 基于量测数据的低压配电网精确建模[J]. 电网技术, 2015, 39(11): 3141–3146 LUAN Wenpeng, WANG Bing, ZHOU Ning, et al. Modeling of LV distribution network based on metering data[J]. Power System Technology, 2015, 39(11): 3141–3146 [17] QIN S J, LANG B, CHEN L, et al. A method for distribution line impedance calculation based on metering and distribution data integration[C]//2019 IEEE International Conference on Energy Internet (ICEI). Nanjing, China. IEEE, 2019: 59–63. [18] 王兵. 基于量测数据的低压配电网精确建模[D]. 天津: 天津大学, 2014. WANG Bing. Modeling of secondary distribution network based on metering data[D]. Tianjin: Tianjin University, 2014. [19] 张煜堃. 基于非线性优化的低压配电网参数估计与拓扑辨识研究[D]. 天津: 河北工业大学, 2021. ZHANG Yukun. Study on nonlinear optimization-based parameter estimation and topology identification of low-voltage distribution networks[D]. Tianjin: Hebei University of Technology, 2021. [20] 王昕. 梯度下降及优化算法研究综述[J]. 电脑知识与技术, 2022, 18(8): 71–73 WANG Xin. A survey of gradient descent and optimization algorithms[J]. Computer Knowledge and Technology, 2022, 18(8): 71–73 [21] 王青松. 一种新的最速下降法[D]. 长春: 吉林大学, 2021. WANG Qingsong. A new steepest descent method[D]. Changchun: Jilin University, 2021. [22] 电力系统同步相量测量装置检测规范: GB/T 26862—2011[S]. [23] 童力, 梁海维, 邹旭东, 等. 基于数据驱动的配电网拓扑识别及线路阻抗估计[J]. 浙江电力, 2022, 41(1): 10–18 TONG Li, LIANG Haiwei, ZOU Xudong, et al. Date-driven distribution network topology identification and line impedance estimation[J]. Zhejiang Electric Power, 2022, 41(1): 10–18 [24] 刘倩. 基于WAMS Light的低频振荡在线辨识方法研究[D]. 济南: 山东大学, 2014. LIU Qian. Online analysis of low frequency oscillation identification based on WAMS light[D]. Jinan: Shandong University, 2014.
|