[1] 国家能源局. 国家能源局关于进一步落实分布式光伏发电有关政策的通知[A]. 北京, 2014. [2] 裴哲义, 丁杰, 李晨, 等. 分布式光伏并网问题分析与建议[J]. 中国电力, 2018, 51(10):80-87 PEI Zheyi, DING Jie, LI Chen, et al. Analysis and suggestion for distributed photovoltaic generation[J]. Electric Power, 2018, 51(10):80-87 [3] 贡晓旭, 金强, 王基, 等. 典型功能区分布式光伏接入对配电网建设改造的影响[J]. 中国电力, 2016, 49(3):166-171 GONG Xiaoxu, JIN Qiang, WANG Ji, et al. Effects of distributed PV connected to grid on distribution network constructions in typical functional zones[J]. Electric Power, 2016, 49(3):166-171 [4] 王洪坤, 葛磊蛟, 李宏伟, 等. 分布式光伏发电的特性分析与预测方法综述[J]. 电力建设, 2017, 38(7):1-9 WANG Hongkun, GE Leijiao, LI Hongwei, et al. A review on characteristic analysis and prediction method of distributed PV[J]. Electric Power Construction, 2017, 38(7):1-9 [5] BELHAOUAS N, CHEIKH M, AGATHOKLIS P, et al. PV array power output maximization under partial shading using new shifted PV array arrangements[J]. Applied Energy, 2017, 187:326-337. [6] 王晶, 黄越辉, 李驰, 等. 考虑空间相关性和天气类型划分的多光伏电站时间序列建模方法[J]. 电网技术, 2020, 44(4):1376-1384 WANG Jing, HUANG Yuehui, LI Chi, et al. Time series modeling method for multi-photovoltaic power stations considering spatial correlation and weather type classification[J]. Power System Technology, 2020, 44(4):1376-1384 [7] 张程熠, 唐雅洁, 李永杰, 等. 适用于小样本的神经网络光伏预测方法[J]. 电力自动化设备, 2017, 37(1):101-106 ZHANG Chengyi, TANG Yajie, LI Yongjie, et al. PV power forecast based on neural network with a small number of samples[J]. Electric Power Automation Equipment, 2017, 37(1):101-106 [8] ZHANG Haixiang, CHENG Lilin, DING Tao, et al. Hybrid method for short-term photovoltaic power forecasting based on deep convolutional neural network[J]. Generation, Transmission & Distribution, 2018, 12(20):4557-4567. [9] 甄皓. 有限信息下基于深度学习模型的小型分布式光伏电站功率预测[J]. 上海节能, 2020(4):302-308 ZHEN Hao. Power prediction of small distributed photovoltaic power plant based on deep learning model with limited information[J]. Shanghai Energy Conversation, 2020(4):302-308 [10] 侯伟, 肖健, 牛利勇, 等. 基于灰色理论的光伏发电系统出力预测方法[J]. 电气技术, 2016(4):53-58 HOU Wei, XIAO Jian, NIU Liyong. Analysis of power generation capacity of PV power generation system in electric vehicle charging station[J]. Electrical Engineering, 2016(4):53-58 [11] 龚莺飞, 鲁宗相, 乔颖, 等. 光伏功率预测技术[J]. 电力系统自动化, 2016, 40(4):140-151 GONG Yingfei, LU Zongxiang, QIAO Ying, et al. An overview of photovoltaic energy system output forecasting technology[J]. Automation of Electric Power Systems, 2016, 40(4):140-151 [12] 李伟, 王冰, 陈献慧, 等. 基于气象因子权重相似日的短期光伏功率预测[J]. 广东电力, 2018, 31(4):59-64 LI Wei, WANG Bing, CHENG Xianhui, et al. Prediction on short-term photovoltaic power based on similar day with meteorological factor weight[J]. Guangdong Electric Power, 2018, 31(4):59-64 [13] 艾逸阳. 基于地基云图的超短期光伏电站辐照度预测研究[D]. 杭州:浙江大学, 2018. AI Yiyang. Very short-term solar irradiance forecast based on sky images[D]. Hangzhou:Zhejiang University, 2018. [14] 朱想, 居蓉蓉, 程序, 等. 组合数值天气预报与地基云图的光伏超短期功率预测模型[J]. 电力系统自动化, 2015, 39(6):4-10 ZHU Xiang, JU Rongrong, CHENG Xu, et al. Controller architecture design for MMC-HVDC physical simulation system[J]. Automation of Electric Power Systems, 2015, 39(6):4-10 [15] 张家安, 王琨玥, 陈建, 等. 基于空间相关性的分布式光伏出力预测[J]. 电力建设, 2016, 4(2):203-208 ZHANG Jia'an, WANG Kunyue, CHEN Jian, et al. Research on prediction of distributed photovoltaic output considering spatial relevance[J]. Electric Power Construction, 2016, 4(2):203-208 [16] XWEGNON G, GIRARD R, KARINIOTSKIS G. Short-term spatial-temporal forecasting of photovoltaic production[J]. IEEE Transactions on Sustainable Energy, 2018, 9(2):538-546. [17] 刘博, 科德平, 李鹏, 等. 低压配电台区分布式光伏发电功率辨识方法[J]. 电力系统自动化, 2019, 43(19):111-117 LIU Bo, KE Deping, LI Peng, et al. Identification method of distributed photovoltaic power in low-voltage distribution networks[J]. Automation of Electric Power Systems, 2019, 43(19):111-117 [18] 焦田利, 章坚民, 李雄, 等. 基于空间相关性的大规模分布式用户光伏空间分群方法[J]. 电力系统自动化, 2019, 43(21):97-102 JIAO Tianli, ZHANG Jianmin, LI Xiong, et al. Spatial clustering method for large-scale distribution user photovoltaic based on spatial correlation[J]. Automation of Electric Power Systems, 2019, 43(21):97-102 [19] 严华江, 章坚民, 胡瑛俊, 等. 考虑空间相关性的分布式光伏发电出力预测及误差评价指标研究[J]. 浙江电力, 2020, 39(3):54-60 YAN Huajiang, ZHANG Jianmin, HU Yingjun, et al. Distributed photovoltaic power generation output prediction based on spatial correlation and error evaluation indexes[J]. Zhejiang Electric Power, 2020, 39(3):54-60 [20] AGOUA X G, GIRARD R, KARINIOTAKIS G. Short-term spatio-temporal forecasting of photovoltaic power production[J]. IEEE Transaction on Sustainable Energy, 2017(99):1-11. [21] 乔颖, 孙荣富, 丁然, 等. 基于数据增强的分布式光伏电站群短期功率预测(一):方法框架与数据增强[J]. 电网技术, 2021, 45(5):1799-1808. QIAO Ying, SUN Rongfu, DING Ran et al. Distributed photovoltaic station cluster gridding short-term power forecasting part 1:methodology and data augmentation[J]. Power System and Technology,2021,45(5):1799-1808. [22] 李佳儒. 光伏发电输出功率的预测方法研究[D]. 沈阳:沈阳农业大学, 2018. LI Jiaru. Methods and research on forecasting output power of photovoltaic power generation[D]. Shenyang:Shenyang Agricultural University, 2018. [23] 吕斌斌, 方勤斌, 王国帮, 等. 分布式家庭屋顶光伏异常数据识别与修复方法[J]. 电气传动自动化, 2018, 40(2):1-5, 20 LYU Binbin, FANG Qinbin, WANG Guobang, et al. Method for identification and restoration of abnormal power data in distributed household rooftop photovoltaic device[J]. Electric Drive Automation, 2018, 40(2):1-5, 20 [24] 黄通. 含随机功率修正的时间序列回归光伏功率预测方法研究[D]. 南京:南京航空航天大学, 2017. HUANG Tong. Study on PV power prediction method based on multiple linear regression with time-series and stochastic error correction[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017. [25] 郭辉, 杨国清, 姚李孝, 等. 基于综合相似日和功率相关性的光伏电站预测功率修正[J]. 电网与清洁能源, 2018, 34(9):52-58 GUO Hui, YANG Guoqing, YAO Lixiao, et al. Correction of predictive power of PV plants based on integrated similar days and power correlations[J]. Power System and Clean Energy, 2018, 34(9):52-58
|