中国电力 ›› 2014, Vol. 47 ›› Issue (3): 33-36.DOI: 10.11930/j.issn.1004-9649.2014.3.33.3

• 风光储专栏 • 上一篇    下一篇

新型光伏系统MPPT控制策略的研究

金晓虎, 陈华, 冯涛   

  1. 新疆大学 电气工程学院,新疆 乌鲁木齐 830047
  • 出版日期:2014-03-31 发布日期:2015-12-18

Research on a new MPPT control strategy of PV system

JIN Xiao-hu, CHEN Hua, FENG Tao   

  1. College of Electrical Engineering,Xinjiang University, Urumqi 830047, China
  • Online:2014-03-31 Published:2015-12-18

摘要: 在Matlab/Simulink仿真环境下,搭建了光伏电池的通用仿真模型,并提出了一种新的基于神经网络预测结合中值法的光伏发电系统最大功率点跟踪(MPPT)的控制策略。即在外界环境或负载发生变化时,先通过BP神经网络给出新的外界条件下的初始占空比,再结合小步长的中值法,直至达到最大功率点跟踪的目的。最后利用生成的神经网络模块,进行了相关的对比仿真,结果表明,新的控制策略能够快速、准确的跟踪到当前条件下的最大功率点,并具有较好的稳态性能。

关键词: 光电池模型, MPPT, 中值步长法, 神经网络

Abstract: Based on the platform of Matlab/Simulink,a generic simulation model of PV battery is built. Then a MPPT control strategy of PV system based on intermediate value of step length method combined with neural network is proposed. When the environment or the load changes suddenly,the BP neural network will provide the initial duty ration. After that,by using the intermediate value of step length method with small-step,the system will get to the MPP finally. In the end, by using neural network module, the simulation results show that the control strategy proposed in this paper can track the MPP fast and accurately with a good static performance.

Key words: PV model, MPPT, The intermediate value of step length method, Neural network

中图分类号: