中国电力 ›› 2023, Vol. 56 ›› Issue (11): 143-150.DOI: 10.11930/j.issn.1004-9649.202308052

• 电网 • 上一篇    下一篇

基于改进ED及CM-BPNN算法的保护测量回路误差状态评估方法

易亚文1,2(), 赵静朴2, 柳灿3, 蒋焮焮2, 李方玖2, 李振兴3   

  1. 1. 武汉大学 电气与自动化学院,湖北 武汉 430072
    2. 中国长江电力股份有限公司,湖北 武汉 430010
    3. 三峡大学 电气与新能源学院,湖北 宜昌 443002
  • 收稿日期:2023-08-14 出版日期:2023-11-28 发布日期:2023-11-28
  • 作者简介:易亚文(1979—),男,通信作者,高级工程师,从事水电站运行与维护研究,E-mail: 1729686912@qq.com
  • 基金资助:
    国家自然科学基金资助项目(大规模电力外送通道重合闸所致重大风险分析与规避控制策略研究,52077120);长江电力股份有限公司科技项目(向家坝电站基于主动测评与多参信息差异的保护及测量装置状态评估与在线诊断,Z422202011)。

Error Status Evaluation Method for Protection Measurement Circuit Based on Improved ED and CM-BPNN Algorithms

Yawen YI1,2(), Jingpu ZHAO2, Can LIU3, Xinxin JIANG2, Fangjiu LI2, Zhenxing LI3   

  1. 1. School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
    2. China Yangtze Power Co., Ltd., Wuhan 430010, China
    3. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
  • Received:2023-08-14 Online:2023-11-28 Published:2023-11-28
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Research on Major Risk Analysis and Control Strategy by Reclosing for Large-Scale Power Transmission Channel, No.52077120) and Science & Technology Project of China Yangtze Power Co., Ltd. (Xiangjiaba Power Station is Based on Active Evaluation and Multi-reference Information Difference Protection and Measurement Device Status Assessment and Online Diagnosis, No.Z422202011).

摘要:

通过对保护测量回路误差状态进行准确评估,能掌握保护装置运行情况并及时发现保护装置存在的隐患。提出了一种基于改进欧氏距离(euclidean distance,ED)及云模型-BP神经网络(cloud model-back propagation neural metwork,CM-BPNN)算法的变电站保护测量回路误差状态评估方法。首先,对测量数据制定不同指标数据的归一化原则;其次,引入改进欧氏距离作为误差评估的启动判据,根据对保护动作性能的影响程度将误差状态进行等级划分并引入云模型计算二级指标的误差状态隶属度;最后,确定每一种误差状态对应的定位映射结果,完成BP神经网络模型的构建,再以此模型进行保护装置电流/电压未知误差状态的评估和定位。基于PSCAD软件搭建220 kV变电站模型,对所提方法的有效性进行验证。

关键词: 保护测量回路, 改进欧氏距离, 云模型, 神经网络

Abstract:

The accurate evaluation of the error status of the protection measurement circuit can help to understand the operation status of the protection devices, and to timely and effectively find the hidden dangers of the protection devices. This paper proposes an error status evaluation method for substation protection measurement circuit based on improved ED and CM-BPNN algorithms. Firstly, the normalization principle of different index data is formulated for the measurement data. Secondly, the improved Euclidean distance is introduced as the starting criterion for error evaluation. According to the degree of influence on the performance of the protection action, the error status is graded, and the cloud model is introduced to calculate the error status membership degree of the secondary index. Finally, the positioning mapping results corresponding to each error status are determined, and the BP neural network model is constructed, which is then used to evaluate and locate the unknown error status of the current/voltage of the protection devices. Based on PSCAD software, a 220kV substation model was constructed to verify the effectiveness of the proposed method.

Key words: protection measurement circuit, improved Euclidean distance, cloud model, neural network