中国电力 ›› 2023, Vol. 56 ›› Issue (11): 134-142.DOI: 10.11930/j.issn.1004-9649.202212066
郭朝波1(), 张溢波1(
), 张宏炯1(
), 马凯2, 陈璐3
收稿日期:
2022-12-19
出版日期:
2023-11-28
发布日期:
2023-11-28
作者简介:
郭朝波(1989—),男,工程师,从事市场营销、综合能源服务研究,E-mail: 447801933@qq.com基金资助:
Chaobo GUO1(), Yibo ZHANG1(
), Hongjiong ZHANG1(
), Kai MA2, Lu CHEN3
Received:
2022-12-19
Online:
2023-11-28
Published:
2023-11-28
Supported by:
摘要:
深度探索用户负荷可调节潜力是国家电力市场精细化发展的迫切需求。为有效感知电力用户负荷综合响应潜力,提出一种模糊粗糙环境下的混合评估模型。首先,从经济性、用户特性、负荷特性、信息特性等4个维度构建负荷响应潜力指标体系;其次,充分考虑评估中个体判断的模糊性和群体偏好的多样性,采用模糊粗糙数对个体语义评估信息进行处理和集结;然后,将模糊粗糙熵权法和逐步加权评估比率分析法(step-wise weight assessment ratio analysis,SWARA)相结合确定指标综合权重,并采用基于模糊粗糙数的改进多属性边界逼近区域比较法(multi-attributive border approximation area comparison,MABAC)计算电力用户针对属性函数的负荷响应潜力综合评估值,从而获取潜力排序结果;最后,以多个行业的电力用户负荷综合响应潜力评估为例,验证所提模型的有效性。
郭朝波, 张溢波, 张宏炯, 马凯, 陈璐. 粗糙模糊环境下电力用户负荷响应潜力评估[J]. 中国电力, 2023, 56(11): 134-142.
Chaobo GUO, Yibo ZHANG, Hongjiong ZHANG, Kai MA, Lu CHEN. Power User Load Response Potential Assessment under Fuzzy-Rough Environment[J]. Electric Power, 2023, 56(11): 134-142.
语义变量 | 模糊标度 | |
very low (VL) | (0, 0, 0.1) | |
low (L) | (0, 0.1, 0.3) | |
slightly low (SL) | (0.1, 0.3, 0.5) | |
medium (M) | (0.3, 0.5, 0.7) | |
slightly high (SH) | (0.5, 0.7, 0.9) | |
high (H) | (0.7, 0.9, 1) | |
very high (VH) | (0.9, 1, 1) |
表 1 评估方案的语义变量及对应模糊标度
Table 1 Semantic variables and corresponding fuzzy scales of evaluation schemes
语义变量 | 模糊标度 | |
very low (VL) | (0, 0, 0.1) | |
low (L) | (0, 0.1, 0.3) | |
slightly low (SL) | (0.1, 0.3, 0.5) | |
medium (M) | (0.3, 0.5, 0.7) | |
slightly high (SH) | (0.5, 0.7, 0.9) | |
high (H) | (0.7, 0.9, 1) | |
very high (VH) | (0.9, 1, 1) |
语义变量 | 模糊标度 | |
equally important (EI) | (1, 1, 1) | |
moderately less important (MI) | (0.67, 0.8, 1) | |
less important (LI) | (0.4, 0.5, 9.67) | |
very less important (VLI) | (0.29, 0.33, 0.4) | |
much less important (MLI) | (0.22, 0.25, 0.29) |
表 2 评估指标重要性的语义变量及对应模糊标度
Table 2 Semantic variables and corresponding fuzzy scales for evaluating the importance of indicators
语义变量 | 模糊标度 | |
equally important (EI) | (1, 1, 1) | |
moderately less important (MI) | (0.67, 0.8, 1) | |
less important (LI) | (0.4, 0.5, 9.67) | |
very less important (VLI) | (0.29, 0.33, 0.4) | |
much less important (MLI) | (0.22, 0.25, 0.29) |
方案 | C11 | C12 | C21 | C22 | C23 | C24 | C31 | C32 | C41 | C42 | C43 | |||||||||||
A1 | SL, H, VH, SL | M, M, H, M | SH, H, H, SH | H, H, H, H | M, VH, VH, M | L, M, M, L | H, M, M, H | SH, M, M, SH | VH, H, H, H | M, M, M, M | H, SH, H, H | |||||||||||
A2 | L, SH, VL, VL | M, H, H, M | L, M, VH, L | H, M, H, H | M, H, H, H | M, L, L, M | M, H, H, M | H, M, M, H | M, M, SH, SH | VH, VH, VH, H | M, SL, SH, M | |||||||||||
A3 | M, SH, SH, M | VH, M, M, VH | M, M, SL, M | H, M, M, SL | M, VH, VH, M | M, M, M, M | SH, H, H, SH | H, H, H, H | SL, SL, M, M | M, M, M, M | SL, M, SL, SL | |||||||||||
A4 | M, H, H, M | M, M, H, H | M, H, H, M | H, H, H, H | H, H, H, H | M, M, M, L | SH, M, M, SH | H, M, M, H | VH, VH, H, VH | SL, M, SL, SL | H, VH, VH, VH | |||||||||||
A5 | VH, VH, H, H | VH, VH, VH, VH | VL, VL, VL, VL | VL, VL, SL, VL | VL, L, L, VL | VL, VL, VL, VL | VH, VH, VH, VH | VL, H, H, VL | H, VH, M, M | SL, M, M, M | M, M, M, M | |||||||||||
A6 | H, H, VH, VH | M, H, H, M | SL, H, H, H | VL, H, H, VL | M, H, VH, M | L, VH, SH, SL | VH, M, VH, VH | VL, VH, VH, VL | VH, VH, H, VH | H, H, VH, H | VH, H, VH, VH |
表 3 6个电力用户方案针对每个指标性能的语义评估信息
Table 3 Semantic evaluation information of six power users for each index performance
方案 | C11 | C12 | C21 | C22 | C23 | C24 | C31 | C32 | C41 | C42 | C43 | |||||||||||
A1 | SL, H, VH, SL | M, M, H, M | SH, H, H, SH | H, H, H, H | M, VH, VH, M | L, M, M, L | H, M, M, H | SH, M, M, SH | VH, H, H, H | M, M, M, M | H, SH, H, H | |||||||||||
A2 | L, SH, VL, VL | M, H, H, M | L, M, VH, L | H, M, H, H | M, H, H, H | M, L, L, M | M, H, H, M | H, M, M, H | M, M, SH, SH | VH, VH, VH, H | M, SL, SH, M | |||||||||||
A3 | M, SH, SH, M | VH, M, M, VH | M, M, SL, M | H, M, M, SL | M, VH, VH, M | M, M, M, M | SH, H, H, SH | H, H, H, H | SL, SL, M, M | M, M, M, M | SL, M, SL, SL | |||||||||||
A4 | M, H, H, M | M, M, H, H | M, H, H, M | H, H, H, H | H, H, H, H | M, M, M, L | SH, M, M, SH | H, M, M, H | VH, VH, H, VH | SL, M, SL, SL | H, VH, VH, VH | |||||||||||
A5 | VH, VH, H, H | VH, VH, VH, VH | VL, VL, VL, VL | VL, VL, SL, VL | VL, L, L, VL | VL, VL, VL, VL | VH, VH, VH, VH | VL, H, H, VL | H, VH, M, M | SL, M, M, M | M, M, M, M | |||||||||||
A6 | H, H, VH, VH | M, H, H, M | SL, H, H, H | VL, H, H, VL | M, H, VH, M | L, VH, SH, SL | VH, M, VH, VH | VL, VH, VH, VL | VH, VH, H, VH | H, H, VH, H | VH, H, VH, VH |
指标 | D1 | D2 | D3 | D4 | 模糊粗糙数 | 清晰值 | ||||||
C11 | EI | MI | EI | EI | [{0.854, 0.979}, {0.913, 0.988}, {1, 1}] | 0.9367 | ||||||
C12 | MI | EI | EI | EI | [{0.854, 0.979}, {0.913, 0.988}, {1, 1}] | 0.9367 | ||||||
C21 | MI | LI | VLI | LI | [{0.362, 0.521}, {0.439, 0.633}, {0.560, 0.810}] | 0.4536 | ||||||
C22 | LI | MI | MI | EI | [{0.560, 0.810}, {0.669, 0.877}, {0.840, 0.979}] | 0.7532 | ||||||
C23 | LI | LI | VLI | VLI | [{0.314, 0.371}, {0.375, 0.458}, {0.467, 0.600}] | 0.3350 | ||||||
C24 | VLI | MI | MLI | VLI | [{0.279, 0.464}, {0.335, 0.552}, {0.414, 0.680}] | 0.3243 | ||||||
C31 | MI | MI | EI | EI | [{0.750, 0.917}, {0.850, 0.950}, {1, 1}] | 0.8848 | ||||||
C32 | EI | MI | EI | MI | [{0.750, 0.917}, {0.850, 0.950}, {1, 1}] | 0.8848 | ||||||
C41 | LI | VLI | MI | LI | [{0.362, 0.521}, {0.451, 0.633}, {0.591, 0.810}] | 0.4636 | ||||||
C42 | LI | MLI | LI | VLI | [{0.283, 0.372}, {0.333, 0.460}, {0.410, 0.604}] | 0.2960 | ||||||
C43 | VLI | MLI | VLI | LI | [{0.262, 0.337}, {0.304, 0.408}, {0.362, 0.521}] | 0.2624 |
表 4 指标重要性语义评估和集成的模糊粗糙信息
Table 4 Fuzzy rough information for semantic evaluation and integration of indicator importance
指标 | D1 | D2 | D3 | D4 | 模糊粗糙数 | 清晰值 | ||||||
C11 | EI | MI | EI | EI | [{0.854, 0.979}, {0.913, 0.988}, {1, 1}] | 0.9367 | ||||||
C12 | MI | EI | EI | EI | [{0.854, 0.979}, {0.913, 0.988}, {1, 1}] | 0.9367 | ||||||
C21 | MI | LI | VLI | LI | [{0.362, 0.521}, {0.439, 0.633}, {0.560, 0.810}] | 0.4536 | ||||||
C22 | LI | MI | MI | EI | [{0.560, 0.810}, {0.669, 0.877}, {0.840, 0.979}] | 0.7532 | ||||||
C23 | LI | LI | VLI | VLI | [{0.314, 0.371}, {0.375, 0.458}, {0.467, 0.600}] | 0.3350 | ||||||
C24 | VLI | MI | MLI | VLI | [{0.279, 0.464}, {0.335, 0.552}, {0.414, 0.680}] | 0.3243 | ||||||
C31 | MI | MI | EI | EI | [{0.750, 0.917}, {0.850, 0.950}, {1, 1}] | 0.8848 | ||||||
C32 | EI | MI | EI | MI | [{0.750, 0.917}, {0.850, 0.950}, {1, 1}] | 0.8848 | ||||||
C41 | LI | VLI | MI | LI | [{0.362, 0.521}, {0.451, 0.633}, {0.591, 0.810}] | 0.4636 | ||||||
C42 | LI | MLI | LI | VLI | [{0.283, 0.372}, {0.333, 0.460}, {0.410, 0.604}] | 0.2960 | ||||||
C43 | VLI | MLI | VLI | LI | [{0.262, 0.337}, {0.304, 0.408}, {0.362, 0.521}] | 0.2624 |
方案 | | | 排序 | |||
A1 | [{–0.3473, –0.0310}, {0.1789, 0.4892}, {0.5660, 0.8806}] | –0.0419 | 3 | |||
A2 | [{–0.3856, 0.0125}, {0.1609, 0.5248}, {0.5461, 0.8949}] | –0.0185 | 1 | |||
A3 | [{–0.4490, –0.1527}, {0.1021, 0.3712}, {0.4895, 0.7739}] | –0.2026 | 5 | |||
A4 | [{–0.3355, –0.0328}, {0.2229, 0.4933}, {0.5992, 0.8757}] | –0.0246 | 2 | |||
A5 | [{–0.6520, –0.4093}, {–0.2434, –0.0223}, {0.0823, 0.3324}] | –0.6520 | 6 | |||
A6 | [{–0.4244, –0.0006}, {0.0580, 0.4626}, {0.3970, 0.7958}] | –0.1389 | 4 |
表 5 各电力用户针对指标函数的最终评估值和负荷响应潜力排序结果
Table 5 Ranking results of final evaluation value and load response potential of each power user for index function
方案 | | | 排序 | |||
A1 | [{–0.3473, –0.0310}, {0.1789, 0.4892}, {0.5660, 0.8806}] | –0.0419 | 3 | |||
A2 | [{–0.3856, 0.0125}, {0.1609, 0.5248}, {0.5461, 0.8949}] | –0.0185 | 1 | |||
A3 | [{–0.4490, –0.1527}, {0.1021, 0.3712}, {0.4895, 0.7739}] | –0.2026 | 5 | |||
A4 | [{–0.3355, –0.0328}, {0.2229, 0.4933}, {0.5992, 0.8757}] | –0.0246 | 2 | |||
A5 | [{–0.6520, –0.4093}, {–0.2434, –0.0223}, {0.0823, 0.3324}] | –0.6520 | 6 | |||
A6 | [{–0.4244, –0.0006}, {0.0580, 0.4626}, {0.3970, 0.7958}] | –0.1389 | 4 |
1 |
徐青山, 丁一帆, 颜庆国, 等. 大用户负荷调控潜力及价值评估研究[J]. 中国电机工程学报, 2017, 37 (23): 6791- 6800.
DOI |
XU Qingshan, DING Yifan, YAN Qingguo, et al. Study on the potential and value evaluation of large user load regulation[J]. Proceedings of the CSEE, 2017, 37 (23): 6791- 6800.
DOI |
|
2 |
龚钢军, 张心语, 张哲宁, 等. 计及大用户负荷管理的可再生能源消纳[J]. 电网技术, 2020, 44 (8): 2922- 2931.
DOI |
GONG Gangjun, ZHANG Xinyu, ZHANG Zhening, et al. Renewable energy consumption based on large consumer load management[J]. Power System Technology, 2020, 44 (8): 2922- 2931.
DOI |
|
3 | 赵腾, 邬炜, 高艺. 碳中和目标下实现碳循环的电力系统供需规划[J]. 电网技术, 2022, 46 (12): 4895- 4905. |
ZHAO Teng, WU Wei, GAO Yi. Power system demand and supply planning for achieving carbon neutrality considering carbon cycle within power and gas systems[J]. Power System Technology, 2022, 46 (12): 4895- 4905. | |
4 |
HE L, LU Z, ZHANG J, et al. Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas[J]. Applied Energy, 2018, 224, 357- 370.
DOI |
5 |
MURATORI M, RIZZONI G. Residential demand response: dynamic energy management and time-varying electricity pricing[J]. IEEE Transactions on Power Systems, 2016, 31 (2): 1108- 1117.
DOI |
6 | 鲍鹏. 考虑电解铝负荷响应的源网荷协同有功/频率控制研究[D]. 济南: 山东大学, 2021. |
BAO Peng. Study on active power/frequency control of source-grid load coordination considering the load response of electrolytic aluminum[D]. Jinan: Shandong University, 2021. | |
7 | 门向阳, 杨蓝文, 潘杰, 等. 计及电动汽车和冷负荷响应的多楼宇联合优化调度研究[J]. 电力需求侧管理, 2021, 23 (3): 25- 30, 40. |
MEN Xiangyang, YANG Lanwen, PAN Jie, et al. Research on multi-building joint optimal scheduling considering electric vehicle and cold load response[J]. Power Demand Side Management, 2021, 23 (3): 25- 30, 40. | |
8 |
原睿萌, 范绚然, 姬广龙, 等. 考虑响应量与风电出力相关性的需求响应优化调度研究[J]. 电力需求侧管理, 2018, 20 (6): 6- 11.
DOI |
YUAN Ruimeng, FAN Xuanran, JI Guanglong, et al. Study on the optimal dispatching of hybrid type demand response load considering the correlation between response quantity and wind power output[J]. Power Demand Side Management, 2018, 20 (6): 6- 11.
DOI |
|
9 |
梁纪峰, 范辉, 李顺, 等. 计及响应度的电力用户互动潜力画像分析[J]. 科学技术与工程, 2022, 22 (15): 6130- 6138.
DOI |
LIANG Jifeng, FAN Hui, LI Shun, et al. Analysis of power user interaction potential portrait considering user response[J]. Science Technology and Engineering, 2022, 22 (15): 6130- 6138.
DOI |
|
10 |
李东东, 刘洋, 林顺富, 等. 典型居民温控负荷建模及聚合特性研究[J]. 电测与仪表, 2017, 54 (16): 56- 62.
DOI |
LI Dongdong, LIU Yang, LIN Shunfu, et al. The study on the modeling and the aggregation characteristics of typical residential thermostatically-controlled load[J]. Electrical Measurement & Instrumentation, 2017, 54 (16): 56- 62.
DOI |
|
11 |
CHEN Z H, MING X G. A rough–fuzzy approach integrating best–worst method and data envelopment analysis to multi-criteria selection of smart product service module[J]. Applied Soft Computing, 2020, 94, 106479.
DOI |
12 |
ZHU G N, HU J, REN H L. A fuzzy rough number-based AHP-TOPSIS for design concept evaluation under uncertain environments[J]. Applied Soft Computing, 2020, 91, 106228.
DOI |
13 |
曹愈远, 张建, 李艳军, 等. 基于模糊粗糙集和SVM的航空发动机故障诊断[J]. 振动、测试与诊断, 2017, 37 (1): 169- 173.
DOI |
CAO Yuyuan, ZHANG Jian, LI Yanjun, et al. Aero-engine fault diagnosis based on fuzzy rough set and SVM[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37 (1): 169- 173.
DOI |
|
14 |
肖白, 刘庆永, 房龙江, 等. 基于模糊粗糙集理论和时空信息的空间负荷预测[J]. 电力建设, 2017, 38 (1): 58- 67.
DOI |
XIAO Bai, LIU Qingyong, FANG Longjiang, et al. Spatial load forecasting based on fuzzy rough set theory with spatial and temporal information[J]. Electric Power Construction, 2017, 38 (1): 58- 67.
DOI |
|
15 |
谢松, 邹阳, 蔡金锭. 基于模糊粗糙集的变压器油纸绝缘状态评估[J]. 仪器仪表学报, 2017, 38 (1): 190- 197.
DOI |
XIE Song, ZOU Yang, CAI Jinding. Assessment of transformer oil-paper insulation status with fuzzy rough set[J]. Chinese Journal of Scientific Instrument, 2017, 38 (1): 190- 197.
DOI |
|
16 | 安相华, 周立彬, 张力伟. 基于粗糙模糊数与耦合分析的产品工艺参数方案绿色优选[J]. 计算机集成制造系统, 2020, 26 (11): 3057- 3067. |
AN Xianghua, ZHOU Libin, ZHANG Liwei. Product process scheme green selection based on rough fuzzy number and coupling analysis[J]. Computer Integrated Manufacturing Systems, 2020, 26 (11): 3057- 3067. | |
17 |
AYYILDIZ E. Fermatean fuzzy step-wise weight assessment ratio analysis (SWARA) and its application to prioritizing indicators to achieve sustainable development goal[J]. Renewable Energy, 2022, 193, 136- 148.
DOI |
18 |
AGARWAL S, KANT R, SHANKAR R. Evaluating solutions to overcome humanitarian supply chain management barriers: a hybrid fuzzy SWARA–Fuzzy WASPAS approach[J]. International Journal of Disaster Risk Reduction, 2020, 51, 101838.
DOI |
19 |
CUI Y F, LIU W, RANI P, et al. Internet of things (IoT) adoption barriers for the circular economy using pythagorean fuzzy SWARA-CoCoSo decision-making approach in the manufacturing sector[J]. Technological Forecasting and Social Change, 2021, 171, 120951.
DOI |
20 |
ZARBAKHSHNIA N, SOLEIMANI H, GHADERI H. Sustainable third-party reverse logistics provider evaluation and selection using fuzzy SWARA and developed fuzzy COPRAS in the presence of risk criteria[J]. Applied Soft Computing, 2018, 65, 307- 319.
DOI |
21 | 吕昳苗, 史兆英, 宁鹏飞. 基于SWARA的供应链韧性影响因素分析[J]. 中国市场, 2022, (10): 167- 170. |
LV Yimiao, SHI Zhaoying, NING Pengfei. Analysis on influencing factors of supply chain toughness based on SWARA[J]. China Market, 2022, (10): 167- 170. | |
22 |
张健钊, 陈星莺, 徐石明, 等. 基于AHP-熵权法的工业大用户用电能效评估[J]. 电网与清洁能源, 2017, 33 (1): 57- 63.
DOI |
ZHANG Jianzhao, CHEN Xingying, XU Shiming, et al. Electricity utilization evaluation of large industrial users based on AHP and entropy method[J]. Power System and Clean Energy, 2017, 33 (1): 57- 63.
DOI |
|
23 |
WU Y N, LIAO M J, HU M Y, et al. A decision framework of low-speed wind farm projects in hilly areas based on DEMATEL-entropy-TODIM method from the sustainability perspective: a case in China[J]. Energy, 2020, 213, 119014.
DOI |
24 |
WU Q, LIU X W, QIN J D, et al. An integrated generalized TODIM model for portfolio selection based on financial performance of firms[J]. Knowledge-Based Systems, 2022, 249, 108794.
DOI |
25 |
HUANG G Q, XIAO L M, PEDRYCZ W, et al. Design alternative assessment and selection: a novel Z-cloud rough number-based BWM-MABAC model[J]. Information Sciences, 2022, 603, 149- 189.
DOI |
26 |
PAMUČAR D, PETROVIĆ I, ĆIROVIĆ G. Modification of the Best-Worst and MABAC methods: a novel approach based on interval-valued fuzzy-rough numbers[J]. Expert Systems With Applications, 2018, 91, 89- 106.
DOI |
27 |
PAMUČAR D, PUŠKA A, STEVIĆ Ž, et al. A new intelligent MCDM model for HCW management: the integrated BWM-MABAC model based on D numbers[J]. Expert Systems with Applications, 2021, 175, 114862.
DOI |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||