中国电力 ›› 2024, Vol. 57 ›› Issue (12): 157-168.DOI: 10.11930/j.issn.1004-9649.202308050

• 发电 • 上一篇    下一篇

计及多重不确定性的生物质电厂库存优化模型

张金良(), 胡泽萍()   

  1. 华北电力大学 经济与管理学院,北京 102206
  • 收稿日期:2023-08-10 出版日期:2024-12-28 发布日期:2024-12-27
  • 作者简介:张金良(1981—),男,博士,教授,博导,从事电力体制改革、能源经济与气候变化研究,E-mail:zhangjinliang1213@163.com
    胡泽萍(1999—),女,硕士研究生,从事供应链优化、综合能源系统优化调度研究,E-mail:hzp1473634026@163.com
  • 基金资助:
    国家自然科学基金资助项目(发电企业碳减排的市场型政策组合优化研究,71774054);国家社会科学基金重大项目(数字经济推动社会主义生产、生活以及生态和谐共生研究,22ZDA107)。

Inventory Optimization Model of Biomass Power Plant Considering Multiple Uncertainties

Jinliang ZHANG(), Zeping HU()   

  1. School of Economics and Management, North China Electric Power University, Beijing 102206, China
  • Received:2023-08-10 Online:2024-12-28 Published:2024-12-27
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Research on Market-Oriented Policy Combination Optimization of Carbon Emission Reduction in Power Generation Enterprises, No.71774054) and National Social Science Fund Major Project (Research on Digital Economy Promoting Socialist Production, Life and Ecological Harmony Coexistence, No.22ZDA107).

摘要:

生物质电厂库存优化策略的制定是保障区域电力供应的基础,然而生物燃料的季节性和需求的不确定性给库存优化带来了极大的挑战。为降低多类不确定因素对库存优化的影响,提出一种计及多重不确定性的生物质电厂库存随机-鲁棒优化模型。首先,使用椭球不确定集描述了生物质燃料价格及质量水平的不确定性,并利用情景树法构建典型生物质可用性场景,降低燃料供应季节性对库存策略制定的影响。其次,考虑误差的随机性和模糊性,利用生态云发生器模拟了3种用户的负荷曲线,提高了需求曲线拟合的准确性。最后,以库存总成本最小为目标,建立计及多重不确定性的生物质电厂库存随机-鲁棒优化模型,并通过算例对比确定型、随机和随机-鲁棒3类优化模型的优化结果,验证模型的有效性。结果表明:随机-鲁棒优化模型的生物质电厂库存总成本最低,为269.15万元。相比随机优化模型,所提策略的库存总成本降低了34.59%,能够提升库存优化策略的经济性和可靠性。

关键词: 随机-鲁棒优化, 椭球式不确定集, 正态云模型, 生物质电厂, 库存优化

Abstract:

The formulation of inventory optimization strategies for biomass power plants is the basis for ensuring regional power supply. However, the seasonality and demand uncertainty of biofuels have brought great challenges to inventory optimization. In order to reduce the impact of multiple uncertain factors on inventory optimization, a stochastic-robust inventory optimization model for biomass power plants based on multiple uncertainties was proposed. First, the uncertainties of the price and quality level of biomass fuels are described using ellipsoidal uncertainty sets. And use the scenario tree method to construct typical biomass availability scenarios to reduce the impact of fuel supply seasonality on inventory optimization strategies. Secondly, considering the randomness and ambiguity of the error, three kinds of user load curves are simulated by using the ecological cloud generator, which improves the accuracy of demand curve fitting. Finally, a stochastic-robust optimization model of biomass power plant inventory taking multiple uncertainties into account is developed with the objective of minimizing the total inventory cost. The validity of the model is verified by comparing the optimization results of the deterministic, stochastic and stochastic-robust optimization models through examples. The results show that the total cost of biomass power plant inventory in the stochastic-robust optimization model is the lowest, which is 2.6915 million yuan. Compared with the stochastic optimization model, the total inventory cost of the proposed strategy is reduced by 34.59%, which can improve the economy and reliability of the inventory optimization strategy.

Key words: stochastic-robust optimization, ellipsoidal uncertain set, normal cloud model, biomass power plant, inventory optimization