中国电力 ›› 2024, Vol. 57 ›› Issue (12): 157-168.DOI: 10.11930/j.issn.1004-9649.202308050
收稿日期:
2023-08-10
出版日期:
2024-12-28
发布日期:
2024-12-27
作者简介:
张金良(1981—),男,博士,教授,博导,从事电力体制改革、能源经济与气候变化研究,E-mail:zhangjinliang1213@163.com基金资助:
Received:
2023-08-10
Online:
2024-12-28
Published:
2024-12-27
Supported by:
摘要:
生物质电厂库存优化策略的制定是保障区域电力供应的基础,然而生物燃料的季节性和需求的不确定性给库存优化带来了极大的挑战。为降低多类不确定因素对库存优化的影响,提出一种计及多重不确定性的生物质电厂库存随机-鲁棒优化模型。首先,使用椭球不确定集描述了生物质燃料价格及质量水平的不确定性,并利用情景树法构建典型生物质可用性场景,降低燃料供应季节性对库存策略制定的影响。其次,考虑误差的随机性和模糊性,利用生态云发生器模拟了3种用户的负荷曲线,提高了需求曲线拟合的准确性。最后,以库存总成本最小为目标,建立计及多重不确定性的生物质电厂库存随机-鲁棒优化模型,并通过算例对比确定型、随机和随机-鲁棒3类优化模型的优化结果,验证模型的有效性。结果表明:随机-鲁棒优化模型的生物质电厂库存总成本最低,为269.15万元。相比随机优化模型,所提策略的库存总成本降低了34.59%,能够提升库存优化策略的经济性和可靠性。
张金良, 胡泽萍. 计及多重不确定性的生物质电厂库存优化模型[J]. 中国电力, 2024, 57(12): 157-168.
Jinliang ZHANG, Zeping HU. Inventory Optimization Model of Biomass Power Plant Considering Multiple Uncertainties[J]. Electric Power, 2024, 57(12): 157-168.
季度 | 松木纸浆 | 松木锯材 | 硬木纸浆 | 硬木锯材 | ||||
一 | 61.2 | 163.2 | 68.0 | 231.2 | ||||
二 | 54.4 | 163.2 | 74.8 | 251.6 | ||||
三 | 47.6 | 156.4 | 74.8 | 265.2 | ||||
四 | 54.4 | 163.2 | 74.8 | 272.0 |
表 1 4种生物质燃料的平均单位购买价格
Table 1 Average unit purchase price of four biomass fuels 单位:元/绿吨
季度 | 松木纸浆 | 松木锯材 | 硬木纸浆 | 硬木锯材 | ||||
一 | 61.2 | 163.2 | 68.0 | 231.2 | ||||
二 | 54.4 | 163.2 | 74.8 | 251.6 | ||||
三 | 47.6 | 156.4 | 74.8 | 265.2 | ||||
四 | 54.4 | 163.2 | 74.8 | 272.0 |
燃料 类型 | 燃料运 输成本/ (元·绿吨–1) | 运输 里程/ km | 库存持 有成本/ (元·绿吨–1) | 燃料质量 下降惩罚 成本/ (元·绿吨–1) | 第一季度 生物质可 获得量/ 绿吨 | 初始 库存量/ 绿吨 | ||||||
松木纸浆 | 0.35 | 35 | 0.3 | 6.12 | 337 | |||||||
松木锯材 | 0.35 | 65 | 1.5 | 16.30 | 337 | |||||||
硬木纸浆 | 0.40 | 35 | 0.3 | 6.80 | 337 | |||||||
硬木锯材 | 0.40 | 65 | 1.5 | 23.10 | 337 |
表 2 库存优化相关参数
Table 2 Relevant parameters of inventory optimization
燃料 类型 | 燃料运 输成本/ (元·绿吨–1) | 运输 里程/ km | 库存持 有成本/ (元·绿吨–1) | 燃料质量 下降惩罚 成本/ (元·绿吨–1) | 第一季度 生物质可 获得量/ 绿吨 | 初始 库存量/ 绿吨 | ||||||
松木纸浆 | 0.35 | 35 | 0.3 | 6.12 | 337 | |||||||
松木锯材 | 0.35 | 65 | 1.5 | 16.30 | 337 | |||||||
硬木纸浆 | 0.40 | 35 | 0.3 | 6.80 | 337 | |||||||
硬木锯材 | 0.40 | 65 | 1.5 | 23.10 | 337 |
平均水 分含量/ % | 水分含 量上限/ % | 水分含 量下限/ % | 平均较高 热值/ ((MW·h)· 绿吨–1) | 较高热值 上限/ ((MW·h)· 绿吨–1) | 较高热值 下限/ ((MW·h)· 绿吨–1) | |||||
30 | 35 | 25 | 4.98 | 5.27 | 4.69 |
表 3 燃料质量水平指标值
Table 3 Indicator values of fuel quality levels
平均水 分含量/ % | 水分含 量上限/ % | 水分含 量下限/ % | 平均较高 热值/ ((MW·h)· 绿吨–1) | 较高热值 上限/ ((MW·h)· 绿吨–1) | 较高热值 下限/ ((MW·h)· 绿吨–1) | |||||
30 | 35 | 25 | 4.98 | 5.27 | 4.69 |
名称 | 样本 量/个 | 平均值/ MW | 标准差/ MW | 偏度 | 峰度 | Jarque-Bera检验 | ||||||||||
χ2 | 自由 度 | p值 | ||||||||||||||
居民负荷 | 12 | 359.004 | 0.898 | –0.736 | 1.649 | 2 | 0.438 | |||||||||
工商业 用户负荷 | 12 | 798.338 | 153.482 | 0.820 | –0.817 | 1.495 | 2 | 0.473 | ||||||||
大工业 用户负荷 | 12 | 69.852 | 0.129 | –0.701 | 0.433 | 2 | 0.805 |
表 4 正态性检验结果
Table 4 Normality test results
名称 | 样本 量/个 | 平均值/ MW | 标准差/ MW | 偏度 | 峰度 | Jarque-Bera检验 | ||||||||||
χ2 | 自由 度 | p值 | ||||||||||||||
居民负荷 | 12 | 359.004 | 0.898 | –0.736 | 1.649 | 2 | 0.438 | |||||||||
工商业 用户负荷 | 12 | 798.338 | 153.482 | 0.820 | –0.817 | 1.495 | 2 | 0.473 | ||||||||
大工业 用户负荷 | 12 | 69.852 | 0.129 | –0.701 | 0.433 | 2 | 0.805 |
场景 | 居民负荷 | 工商业用户负荷 | 大工业用户负荷 | |||
1 | 0.10 | 0.10 | 0.11 | |||
2 | 0.10 | 0.11 | 0.09 | |||
3 | 0.10 | 0.10 | 0.08 | |||
4 | 0.10 | 0.10 | 0.09 | |||
5 | 0.08 | 0.10 | 0.10 | |||
6 | 0.11 | 0.12 | 0.10 | |||
7 | 0.09 | 0.09 | 0.10 | |||
8 | 0.11 | 0.09 | 0.10 | |||
9 | 0.11 | 0.11 | 0.13 | |||
10 | 0.09 | 0.10 | 0.10 |
表 5 10个典型场景发生的概率
Table 5 Occurrence probability of 10 typical scenarios
场景 | 居民负荷 | 工商业用户负荷 | 大工业用户负荷 | |||
1 | 0.10 | 0.10 | 0.11 | |||
2 | 0.10 | 0.11 | 0.09 | |||
3 | 0.10 | 0.10 | 0.08 | |||
4 | 0.10 | 0.10 | 0.09 | |||
5 | 0.08 | 0.10 | 0.10 | |||
6 | 0.11 | 0.12 | 0.10 | |||
7 | 0.09 | 0.09 | 0.10 | |||
8 | 0.11 | 0.09 | 0.10 | |||
9 | 0.11 | 0.11 | 0.13 | |||
10 | 0.09 | 0.10 | 0.10 |
模型 | 总库存 成本 | 燃料购买 成本 | 运输 成本 | 存储 成本 | 惩罚 成本 | |||||
确定型模型 | 365.89 | 289.40 | 81.83 | 8.18 | 0 | |||||
随机优化模型 | 362.26 | 286.24 | 67.69 | 8.34 | 0 | |||||
随机-鲁棒优化模型 | 269.15 | 201.43 | 59.48 | 8.24 | 0 |
表 6 3种模型下的电厂库存优化结果
Table 6 Power plant inventory optimization results of three models 单位:万元
模型 | 总库存 成本 | 燃料购买 成本 | 运输 成本 | 存储 成本 | 惩罚 成本 | |||||
确定型模型 | 365.89 | 289.40 | 81.83 | 8.18 | 0 | |||||
随机优化模型 | 362.26 | 286.24 | 67.69 | 8.34 | 0 | |||||
随机-鲁棒优化模型 | 269.15 | 201.43 | 59.48 | 8.24 | 0 |
燃料类型 | 购买成本/ 万元 | 运输成本/ 万元 | 存储成本/ 万元 | 惩罚成本/ 万元 | 燃料使用量/ 绿吨 | |||||
松木纸浆 | 201.43 | 59.48 | 2.48 | 0 | ||||||
松木锯材 | 0.00 | 0.00 | 2.06 | 0 | ||||||
硬木纸浆 | 0.00 | 0.00 | 1.65 | 0 | ||||||
硬木锯材 | 0.00 | 0.00 | 2.06 | 0 | ||||||
合计 | 201.43 | 59.48 | 8.24 | 0 |
表 7 生物质电厂库存优化结果
Table 7 Optimization results of biomass power plant inventory
燃料类型 | 购买成本/ 万元 | 运输成本/ 万元 | 存储成本/ 万元 | 惩罚成本/ 万元 | 燃料使用量/ 绿吨 | |||||
松木纸浆 | 201.43 | 59.48 | 2.48 | 0 | ||||||
松木锯材 | 0.00 | 0.00 | 2.06 | 0 | ||||||
硬木纸浆 | 0.00 | 0.00 | 1.65 | 0 | ||||||
硬木锯材 | 0.00 | 0.00 | 2.06 | 0 | ||||||
合计 | 201.43 | 59.48 | 8.24 | 0 |
1 | 国务院. 2030年前碳达峰行动方案[EB/OL]. (2021-10-24)[2023-08-10]. http://www.gov.cn/zhengce/zhengceku/2021-10/26/content_5644984.htm. |
2 | 刘习文, 彭卓寅, 胡新强, 等. 燃煤火电厂年度燃料成本最小化决策模型及应用[J]. 中国电力, 2022, 55 (6): 202- 207. |
LIU Xiwen, PENG Zhuoyin, HU Xinqiang, et al. Annual fuel cost minimization decision model for thermal power plant and its applications[J]. Electric Power, 2022, 55 (6): 202- 207. | |
3 |
徐春明, 赵道致, 闵杰. 减排规制下基于存货影响销售模式的易变质产品库存优化模型[J]. 系统工程理论与实践, 2018, 38 (6): 1512- 1524.
DOI |
XU Chunming, ZHAO Daozhi, MIN Jie. Optimal inventory models for deteriorating items with stock dependent demand under carbon emissions reduction[J]. Systems Engineering-Theory & Practice, 2018, 38 (6): 1512- 1524.
DOI |
|
4 | 张新功, 莫宁. 基于Weibull函数和价格折扣的易腐品库存订货与定价策略[J]. 重庆师范大学学报(自然科学版), 2020, 37 (4): 1- 5. |
ZHANG Xingong, MO Ning. Ordering and pricing strategy of perishable goods inventory based on Weibull function and price discount[J]. Journal of Chongqing Normal University (Natural Science), 2020, 37 (4): 1- 5. | |
5 | 禹海波, 杨帆, 李媛. 供应提前期和需求不确定下库存系统的随机比较[J]. 运筹与管理, 2018, 27 (7): 76- 83. |
YU Haibo, YANG Fan, LI Yuan. Stochastic comparison of inventory systems under supply leadtime and demand uncertainty[J]. Operations Research and Management Science, 2018, 27 (7): 76- 83. | |
6 | 罗岭. 库存成本变化的VMI供应链协调[J]. 中国管理科学, 2022, 30 (10): 187- 197. |
LUO Ling. Supply chain coordination in vendor-managed inventory systems with variable inventory cost[J]. Chinese Journal of Management Science, 2022, 30 (10): 187- 197. | |
7 | 邱若臻, 张多琦, 孙艺萌, 等. 供需不确定条件下基于CVaR的零售商库存鲁棒优化模型[J]. 中国管理科学, 2020, 28 (12): 98- 107. |
QIU Ruozhen, ZHANG Duoqi, SUN Yimeng, et al. The CVaR-based robust optimization model for retailer's inventory management under supply and demand uncertainties[J]. Chinese Journal of Management Science, 2020, 28 (12): 98- 107. | |
8 | 姚力, 郑海峰, 单葆国, 等. 基于数据驱动机会约束的发电企业电煤采购及库存优化模型[J]. 中国电力, 2023, 56 (6): 176- 184. |
YAO Li, ZHENG Haifeng, SHAN Baoguo, et al. An optimization coal procurement and inventory model for power generation enterprises based on data-driven chance constraints[J]. Electric Power, 2023, 56 (6): 176- 184. | |
9 | 熊浩, 鄢慧丽. 考虑多种安全库存策略的选址-库存问题研究[J]. 中国管理科学, 2021, 29 (1): 72- 81. |
XIONG Hao, YAN Huili. Six location-inventory models with risk pooling in two-echelon logistics system[J]. Chinese Journal of Management Science, 2021, 29 (1): 72- 81. | |
10 |
GAUTAM S, LEBEL L, CARLE M A. Supply chain model to assess the feasibility of incorporating a terminal between forests and biorefineries[J]. Applied Energy, 2017, 198, 377- 384.
DOI |
11 | KANZIAN C, HOLZLEITNER F, STAMPFER K, et al. Regional energy wood logistics–optimizing local fuel supply[J]. Silva Fennica, 2009, 43 (1): 1- 11. |
12 |
AKHTARI S, SOWLATI T, DAY K. Optimal flow of regional forest biomass to a district heating system[J]. International Journal of Energy Research, 2014, 38 (7): 954- 964.
DOI |
13 | NG R T L, MARAVELIAS C T. Design of cellulosic ethanol supply chains with regional depots[J]. Industrial & Engineering Chemistry Research, 2016, 55 (12): 3420- 3432. |
14 |
MEMIŞOĞLU G, ÜSTER H. Integrated bioenergy supply chain network planning problem[J]. Transportation Science, 2016, 50 (1): 35- 56.
DOI |
15 |
VAN DYKEN S, BAKKEN B H, SKJELBRED H I. Linear mixed-integer models for biomass supply chains with transport, storage and processing[J]. Energy, 2010, 35 (3): 1338- 1350.
DOI |
16 |
SHABANI N, SOWLATI T. A mixed integer non-linear programming model for tactical value chain optimization of a wood biomass power plant[J]. Applied Energy, 2013, 104, 353- 361.
DOI |
17 |
YOSHIOKA T, ARUGA K, NITAMI T, et al. Energy and carbon dioxide (CO2) balance of logging residues as alternative energy resources: system analysis based on the method of a life cycle inventory (LCI) analysis[J]. Journal of Forest Research, 2005, 10 (2): 125- 134.
DOI |
18 |
SAGHAEI M, GHADERI H, SOLEIMANI H. Design and optimization of biomass electricity supply chain with uncertainty in material quality, availability and market demand[J]. Energy, 2020, 197, 117165.
DOI |
19 |
AHMADVAND S, KHADIVI M, ARORA R, et al. Bi-objective optimization of forest-based biomass supply chains for minimization of costs and deviations from safety stock[J]. Energy Conversion and Management: X, 2021, 11, 100101.
DOI |
20 |
ABASIAN F, RÖNNQVIST M, OUHIMMOU M. Forest bioenergy network design under market uncertainty[J]. Energy, 2019, 188, 116038.
DOI |
21 |
AWUDU I, ZHANG J. Stochastic production planning for a biofuel supply chain under demand and price uncertainties[J]. Applied Energy, 2013, 103, 189- 196.
DOI |
22 | RAZM S, DOLGUI A, HAMMAMI R, et al. A two-phase sequential approach to design bioenergy supply chains under uncertainty and social concerns[J]. Computers & Chemical Engineering, 2021, 145, 107131. |
23 | WANG C, PENG X, SHANG C, et al. A deep learning-based robust optimization approach for refinery planning under uncertainty[J]. Computers & Chemical Engineering, 2021, 155, 107495. |
24 |
SHABANI N, SOWLATI T. A hybrid multi-stage stochastic programming-robust optimization model for maximizing the supply chain of a forest-based biomass power plant considering uncertainties[J]. Journal of Cleaner Production, 2016, 112, 3285- 3293.
DOI |
25 |
SAN JUAN J L G, AVISO K B, TAN R R, et al. A multi-objective optimization model for the design of biomass co-firing networks integrating feedstock quality considerations[J]. Energies, 2019, 12 (12): 2252.
DOI |
26 | STEFAN M , ANDY P , JOY S J O. Fireside performance of different coatings in biomass power plant[J]. Materials at High Temperatures, 2023, 40 (4): 348- 359. |
27 |
MAHJOUB N, SAHEBI H, MAZDEH M, et al. Optimal design of the second and third generation biofuel supply network by a multi-objective model[J]. Journal of Cleaner Production, 2020, 256, 120355.
DOI |
28 |
CELIK A N. A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey[J]. Renewable Energy, 2004, 29 (4): 593- 604.
DOI |
29 |
NARAYAN P K, SMYTH R. Electricity consumption, employment and real income in Australia evidence from multivariate Granger causality tests[J]. Energy Policy, 2005, 33 (9): 1109- 1116.
DOI |
30 |
EKREN O, EKREN B Y. Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing[J]. Applied Energy, 2010, 87 (2): 592- 598.
DOI |
31 |
GUERICKE D, BLANCO I, MORALES J M, et al. A two-phase stochastic programming approach to biomass supply planning for combined heat and power plants[J]. OR Spectrum, 2020, 42 (4): 863- 900.
DOI |
32 | 王瑞琪, 王新立, 郭光华, 等. 农村光-氢-沼储能综合能源系统建模与鲁棒优化调度[J]. 中国电力, 2023, 56 (5): 89- 98. |
WANG Ruiqi, WANG Xinli, GUO Guanghua, et al. Modeling and robust optimal dispatch of rural integrated energy system considering PV-hydrogen-methane energy storage characteristics[J]. Electric Power, 2023, 56 (5): 89- 98. | |
33 |
黄利军, 张彦龙, 叶畅, 等. 基于正态云DR不确定性建模及配电网优化调度策略[J]. 智慧电力, 2020, 48 (12): 71- 78.
DOI |
HUANG Lijun, ZHANG Yanlong, YE Chang, et al. Uncertainty modeling and optimal scheduling strategy for demand response in distribution network based on normal cloud[J]. Smart Power, 2020, 48 (12): 71- 78.
DOI |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||